
Machine learning for the Higgs Boson Challenge

Florence Osmont, Benoı̂t Müller, Armelle Hours
Master students at EPFL, Switzerland

Abstract—Using machine learning on a dataset from the
CERN, we aimed at predicting if a collision event between two
protons resulted in the creation of a Higgs boson. To do so, we
first cleaned and modified our data and then tried different
models and methods. In this report, we present gradient
descent, stochastic gradient descent, Ridge regression, logistic
regression with stochastic gradient descent (not regularized)
and regularized logistic regression with gradient descent. In
order to optimize our different methods, we used cross-
validation to choose our hyper-parameters. In the end, we
found that our best model is Ridge regression, with an accuracy
of 0.776.

I. INTRODUCTION

In this project, we want to recreate the validation of the
discovery of the Higgs boson. The Higgs boson is detected
by smashing protons onto one another which leads to the
creation of smaller particles and, by observing their decay,
we can see if a Higgs boson was created or not. In this
project, using supervised machine learning, we will predict
if a certain decay signature of a collision event was ’signal’
(Higgs boson) or ’background’ (something else).

II. MODELS AND METHODS

A. Preparing our data set

From our train dataset, we extracted the train input, a
collection of vectors sample where each one represents a
collision event. We extracted the train output containing
strings ’b’ and ’s’ indicating if the collisions in the train
input were respectively a background or a signal. Our first
step was in the train output to replace the signal values by
1 and the background values by 0 or −1 depending on the
context.

To better understand the train input, we visualized all its
features using box plots. We realized the data was skewed
for some features and that there were many outliers. Thus,
we chose to keep and treat them, instead of deleting them
which would have lost too much information. We noticed a
feature seemed to be categorical but decided to treat it like
the others at the moment.

In the train input, missing values were encoded by -999
so we changed their representation to avoid them acting as
outliers and leading to miscomputations. At first, we thought
about erasing them but the dataset is made of circa 21.067
% Nan values, so that would’ve made us lose too much
information. Thus, we decided to replace all missing values
by the median of the column it lies in as it is robust to

outliers. For consistency (to insure our train and test input
have the same distribution), we replaced the missing values
in the test input by the median of the corresponding feature
computed for the train input.

Lastly, we normalized our data so that our algorithms
would perform better on them. Indeed, normalizing puts
them all on the same scale. And again for consistency, we
also ”normalized” the test input by subtracting and dividing
it by the mean and the std of our train input.

B. Models

Let X be a vector of data features, Y ′ the vector ap-
proximating the labels and w the weight parameter. We
considered three different models: Model A, a simple linear
model without biais, Model B, a polynomial expansion of
model A of degree n to be chosen where the exponentiation
is element-wise, and Model C, a logistic model with a biais.

Model A: Y ′ = Xw
Model B: Y ′ = Xnwn + · · ·+Xw1 + w0

Model C: Y ′ = σ(Xw + w0)
We then turned Y ′ into the vector containing the label

encoded by integer values Y .

C. Methods

NB: If we write a hyperparameter was found, it means it
was found using cross-validation on 5-folds (see II-D)

Methods for the linear model A: The linear model
methods we implemented are gradient descent and stochastic
gradient descent.

In both of them, we used an arbitrary initial weight vector
and had stopping criterion on both the number of iterations
and the norm of the gradient. For gradient descent, we chose
a maximum number of iterations of 100 and we found an
optimal step hyperparameter of value 0.27. In stochastic
gradient descent, we chose to increase the maximum number
of iterations to 600 as it does smaller steps, thus needs more
to converge. Our optimal step hyperparameter found was
0.007. Then, for both, we computed the label with the sign
function.

Methods for the polynomial model B: The method we
used to select a polynomial model is the Ridge regression
method because it has fast computation and regularization.

The linear system in ridge regression has been solved with
the Cholesky decomposition which is behind the Numpy
function numpy.linalg.solve and the label was computed
with the sign function. It rapidly gives us a good first result.



method name computed accuracy AI crowd’s accuracy F1 hyper-parameters
gradient descent 0.72 0.697 0.661 step-size=0.27
stochastic gradient descent 0.687 0.644 0.612 step-size=0.007
Ridge regression 0.78 0.776 0.647 degree=3, lambda=2 e-6
logistic regression with stochastic gradient descent without regularizer 0.74 0.69 0.39 step-size:0.08
regularized logistic regression with gradient descent 0.74 0.71 0.363 step-size=0.2 lambda reg=0.01

Table I
ACCURACY AND HYPERPARAMETERS OF OUR METHODS

We found optimal degree and regularization term hyper-
parameters of value 3 and 2 ∗ 10−6.

We didn’t try other methods on this model as computing
the gradient for powers of X was very high consuming and
easily created inf or Nan values.

Methods for the logistic model C: We first applied
stochastic gradient descent on the model. The setting was the
same as in linear model A. We found a step hyperparameter
of 0.08 and chose to do 1700± 300 iterations.

Then, we did a regularized gradient descent. We found
a step size hyperparameter of 0.2 and a regularization
hyperparameter of λ = 0.01. The number of iterations
chosen was 5000 with the same stopping condition and
initial parameter as before.

Eventually, we did some changes to try to improve the
accuracy. First, we took a dynamic step parameter of the
form 1/(iter + 1) at first, then of the form 1/

√
iter + 1

with iter the counter of the current number of iterations.
Additionally, we tried to take a random normal distribution
for the initial weight, and to take the final weight w as
the mean or the median of the ones found by running the
regularized gradient descent multiple times. None of this
made improvement on our computed accuracy. The label
were then obtained with a threshold. By default, we used
0.5. After looking at the distribution of 0’s and 1’s in the
train output, it made sense to try a threshold value around
0.6. But it didn’t change the accuracy, so we kept the one
by default.

D. Research protocol and measurements
The best hyperparameters of each of the methods were

found using cross-validation on 5-folds. The hyperparameter
was then selected as the one minimizing the loss function
associated while taking into account risks of overfitting or
mistake made by noise error.

To compare the different methods and models, we sepa-
rated the train data into a training part (90%) and a validation
part(10%) (we also tried an 80-20 ratio but it made no
significant change). The separation was done randomly using
seed. Then, we trained the parameter on the training part and
computed the accuracy on the validation part. Notice that the
data was prepared as described in II-A.

III. RESULTS

All our results are resumed in I. The ”computed-accuracy”
is computed as in II-D to select the model. The AI-accuracy

and F1 score are the ones given by AI-crowd on the test set.
They are given for reference’s sake as we aren’t selecting
our model based on them to avoid overfitting on the test
output.

After computing the accuracy of our models, the one
with the highest one turned out to be Ridge regression with
a score of 0.78. The rapidity of execution allowed us to
do multiple tests and precise hyperparameter selection with
cross-validation. We obtained a mean square error (MSE) of
0.315. Our Ridge regression submission on AI-crowd also
got an accuracy of 0.776.

IV. DISCUSSION

In the gradient descent methods, we could’ve used a time
criterion, since our number of maximum iteration is often
reached or we could have found the optimal step with line
search.

The limit of the Ridge regression method and the gradient
descent method is that they optimize the mean square error,
which is not directly linked to the accuracy. On the same
note, when doing cross-validation, we could’ve used the
accuracy of our hyperparameter as criterion instead of its
associated maximum likelihood estimator.

Moreover, we could’ve done more specific data process-
ing. Indeed, we noticed that the presence of -999 was
sometimes related to the value of another indicator feature.

V. SUMMARY

To summarize, after cleaning our data by replacing -999
values by the median, we applied gradient descent, stochas-
tic gradient descent, Ridge regression, logistic regression
with stochastic gradient descent without a regularizer and
regularized logistic regression with gradient descent on it.
We used cross validation to find our parameters using the
MLE as criterion. We also tried polynomial fitting where it
was suitable. We tried playing around with the threshold,
changing the size of the step per iteration, taking the mean
or median of the weights... Some issues we encountered
were that some methods took a very long time to run, the
norm of our gradient was very large from the start so we
sometimes couldn’t try polynomial fit... In the end, our op-
timal hyperparameters and the resulting model accuracy per
method can be found in Table I. We found that Model B with
Ridge regression was the optimal one with hyperparameters
degree=3, λ = 2e− 6 and computed accuracy 0.78.



REFERENCES

[1] C. G. I. G. B. K. D. R. Claire Adam-Bourdariosa, Glen Cow-
anb, “Learning to discover: the higgs boson machine learning
challenge,” 2014.


	Introduction
	Models and methods
	Preparing our data set
	Models
	Methods
	Research protocol and measurements

	Results
	discussion
	Summary
	References

