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Abstract
In this project, we aim to solve an entropy regularized version of the Kantorovich optimal

transport problem, by using a low-rank approximation technique on Sinkhorn algorithm. We
apply the method to color transfer for images. We obtain newly colored images, and by using
the low-rank approximation technique with a rank of only 4% of the dimension, we obtain
visually similar images with a time computation reduced by half.

The optimal transport framework
Let’s introduce the optimal transport framework. We would like to transport some mass dis-
tributed in a space to another, and in a optimal way with respect to a certain cost. The total
mass stay the same before and after transportation so it can be supposed to have a value of one.
This will allow us to think of the mass distributions on the spaces as probability distributions.1

Mass transportation In a discrete and finite setting, let’s define the original space X =
{x1, · · · , xn} and a target space Y = {y1, · · · , ym}. In X , the mass is distributed with respect
to a vector p in the simplex ∆n = {p ∈ Rn|

∑
i pi = 1}, such that the mass located in xi is pi.

Similarly, Y has a target distribution of q. In the Kantorovich’s formulation, the transportation
of the mass is defined by a coupling, which indicate how many mass of xi goes to xj . This
gives us a matrix P ∈ Rn×m such that we transport Pij from xi to xj . As a result, summing
the contributions we get the relations pi =

∑
j Pij and qj =

∑
i Pij which implies that 1 =∑

i pi =
∑

i,j Pij so P is a stochastic matrix, and p and q can be understood to be the marginal
distributions of P .

We will use matrix products P1m = p and 1⊤
nP = q where 1k ∈ Rk is the vector with 1 in

all entries. We define the space of couplings between p and q as

M(p,q) = {P ∈ Rn×m
+ |P1m = p,1⊤

nP = q}.

This set is defined by linear constraints and coordinates are bounded in [0, 1], so it is a convex
polytope.

∗Code written in collaboration with Armelle Hours
1A reader already familiar with discrete optimal transport and entropy may want to continue his reading in

the next section after have seen the recap of notations detailed in the implementation section.
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Cost minimization We consider that transporting mass form a point to one other induce a
cost. We define this cost with a cost function c : X ×Y → R so that the cost of transporting mass
from xi to yj is c(xi, yj). We do not necessarily ask the cost to be positive or symmetric, but it is
often a function of xi−yj or ∥xi−yj∥, for a selected norm. To obtain the total cost associated to
a coupling, we sum up all transportation cost, according to their weight in P :

∑
i,j c(xi, yj)Pij .

We stock the values of c in a matrix Cij = c(xi, yj) so that the cost of a coupling can be written
with the Frobenius inner product ⟨., .⟩:

∑
i,j CijPij = ⟨C,P ⟩. Notice that the cost is linear in

the coupling.
Among all possible couplings, we want to try minimizing the cost, and this define an optimal

problem, the Kantorovich problem on discrete finite measures:

(KP ) = min
P∈M(p,q)

⟨C,P ⟩

Note that the minimum exist sinceM(p,q) is compact and the objective function is continuous.
This is also a linear program since M(p,q) is a convex polytope and the objective function is
linear. The problem can hence be solved by linear programming methods, but these are very
wide general methods and can be inefficient for high dimensions, and the particular structure of
the polytope can be used to develop specialized and maybe better methods.

Entropy regularization We are interested here in the entropic regularization of the Kan-
torovich problem. This is a reformulation of the problem where we subtract to the objective
function the Shannon entropy H(P ) =

∑
i,j Pij log

1
Pij

, with the convention 0 log 1
0 = 0. It has

multiple advantages: first, the Shannon entropy being strongly concave, it makes the objective
function strongly convex and the minimizer unique. Also, the interpretation of the Shannon
entropy is that it measures the incertitude of a distribution in the sense that the more entropy
you have, the less entries of P are near 0 or 1, so you go against sparsity. This results in the fact
that the coupling will have many positives values per row and columns and the transport will be
the result of multiple ways participation. Lets write the regularized problem explicitly, using a
regularization term η>0 and a new objective function Vη:

min
P∈M(p,q)

⟨C,P ⟩ − η−1H(P ) = min
M(p,q)

Vη (1)

Relation with matrix scaling and Sinkhorn algorithm
We would like now to obtain information about the analytic solution of the problem, Since it is
a constrained convex problem, we would like to make use of the KKT multiplier theorem. This
will lead us to a characterization of K, and we present it in the following result, the proposition
4.3 of [1].

Proposition 1. The solution of the entropy relaxed optimal problem (1) exists, is unique, and
its solution is has the form

P = D1KD2

for positives diagonal matrices D1, D2 ∈ Rn×m and the gibbs kernel K = e−ηC .

Proof. The existence of a solution come from the compacity of M(p,q) and the continuity of
Vη. Its unicity is a consequence of the η−1-strong convexity of Vη and the convexity ofM(p,q).
Let’s first show the strong convexity, we compute the partial derivatives

∂Pij
Vη(P ) = Cij + η−1(logPij + 1).
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This is still continuously differentiable and we get that the second derivatives are zero except for
the diagonal

∂2
Pij

Vη(P ) = η−1 1

Pij
> η−1.

This define a positive definite hessian with eigenvalues bigger than η−1, so Vη is indeed η−1-
strongly convex. As a result, the minimum is unique, since two different minimizers would define
a segment inside the convex feasible set. Its image would be strictly convex by the strict convexity
and hence contradicting the minimality of the minimizers.

Since (1) is a convex continuously differentiable optimization problem with linear equality
constrains, linearity constraint qualification holds everywhere, strong duality holds and the KKT
conditions are necessary and sufficient. The Lagrange function writes

L(P, µ, ν) = ⟨C,P ⟩ − η−1H(P )− µ⊤(P1− p)− ν⊤(1⊤P − q)

its partial derivative with respect to Pij is

∂PijL(P, µ, ν) = Cij + η−1 logPij − µi − νj

and if we set it to be equal to zero we get

logPij = ηµi + ηνj − ηC

Pij = eηµie−ηCijeηνj

In other words,
P = diag(eηµ)e−ηC diag(eην) =: D1KD2

with element-wise exponentiation.

Matrix scaling an Sinkhorn algorithm The last result shows us that we can search for
a coupling of the form P = D1KD2 with positive diagonal matrices D1, D2. When we apply
the marginal constraints, we get D1KD21 = p and 1⊤D1KD2 = q, which can be rewritten
u ⊙ (Kv) = p and v ⊙ (K⊤v) = q with ⊙ the element-wise product. This is the well known
matrix scaling problem, and can be resolved by the Sinkhorn algorithm: initialize values of u
and v, and then iteratively update them so that they satisfy one of the equations:

u← p

Kv
(2)

v ← q

K⊤u
(3)

(with element-wise division). We stop when we have detected convergence.

Low-rank factorization technique
Let’s look at the computational cost of the Sinkhorn algorithm. Updates (2) computes a matrix
product of mn operations and then n division operations. This gives mn + n = n(m + 1)
operations and we get similarly (n+ 1)m operations for (3). In total, we get

2mn+ n+m ∈ Om,n(mn)

per iteration so we see that the matrix vector computation is responsible for most of the time
complexity. This motivates the use of a low-rank approximation of K and K⊤, since using wisely
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a r-rank approximation takes the time complexity of the matrix-vector products to rm + rn =
r(m+ n) ∈ Om,n(m+ n), we get a total time complexity of

2r(m+ n) +m+ n = (2r + 1)(m+ n) ∈ Om,n(m+ n).

Notice that the time complexity for fixed m and n is then proportional to r.
Explicitly, for a r-rank factorization K ≈ AB, we compute Kv with A(Bv) and K⊤u with

B⊤(A⊤u). If r is at least rank(K), the best approximation given by truncated singular value
decomposition (SVD) is actually exact. If not, then the approximation has a certain error, for
the truncated SVD its value would be the k+1-th singular value of K for the spectral norm. The
question is then how does this projection affect the computed solution of our original optimal
transport problem? To answer this question, we first clearly state the Sinkhorn algorithm, and
then we will present a theorem that links the error of the approximation of K with the optimally
of the computed solution in the context of the original problem.

Implementation of Sinkhorn algorithm
For our purpose, we will only use square matrices so let’s suppose n = m for the suite and the
implementation. We do here a recap of the notions and notations what we will reuse in the
algorithm and theorem:

• ∆n×m = {P ∈ Rn×m
≥0 |1⊤

nP1m = 1}, the simplex of the doubly stochastic matrices. We
write ∆n := ∆n×1.

• p,q ∈ ∆n are the target marginals, stochastic vectors of dimension n.

• M(p,q): the feasible space of doubly stochastic matrices that are couplings of p and q(they
have p and q as marginals).

• H : ∆n×n → [0, 1] the entropy of a coupling, H(P ) =
∑

i,j Pij log
1

Pij
extend by continuity

with the convention 0 log 1
0 = 0.

• VC : M(p,q) → R the objective function VC(P ) = ⟨C,P ⟩ − η−1H(P ), with η > 0 the
regularization coefficient.

• ΠS : Rn×n
≥0 → M(p,q) the Sinkhorn projector. When K is the Gibbs kernel, it solves

the problem VC(Π
S(K)) = minM(p,q) VC and can always be written ΠS(K) = D1KD2 for

some diagonals matrices D1 and D2 .

• P η = argminM(p,q) VC the solution of the problem.

We will estimate the error induced by our approximations. We are doing two of them, we
approximate the kernel by a low-rank technique, and then we estimate its Sinkhorn projection
with the Sinkhorn algorithm. We are going to state and prove a result from [1] that gives the
needed tolerance in term of the wanted accuracy.

Suppose we have an approximation K̃ of K, marginals p and q. The approximated cost
associated to K̃ is C̃ = −η−1 log(K̃). The algorithm find some D1 and D2, which allow us to
define the associated matrix P̃ = D1K̃D2 and cost Ŵ = VC̃(P̃ ).
The Sinkhorn algorithm takes as inputs an approximation K̃ of the Gibbs kernel, and a tolerance δ
for the stopping criterion. As precised in [1], the sum of marginal errors is a natural good criterion
to detect convergence. Note that K is used in functional matrix-vector form, as well as K⊤, for
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example using a low-rank factorization. Also, however D1 and D2 are diagonal matrices, they
are never stored like so but only their diagonal u = diagD1, v = diagD2, and the computations
are always done in this form. The outputs are the matrices D1, D2, and the associated cost Ŵ ,
computed in a efficient way, see Lemma A of [8] for the proof of the equivalence, but notice the
error that a multiplication by η is missing. Since it only multiply the cost by a constant factor,
we are still able to use it to compare the optimality of the computed solutions.

Here is the algorithm2:
Algorithm 1: Sinkhorn
Compute approximate rescaling for the Sinkhorn projection, and the associated cost.

Input : K̃ ∈ Rn×n
>0 (in factorized form), p,q ∈ ∆n, δ > 0

Output: Positive diagonal matrices D1, D2 ∈ Rn×n, cost Ŵ
1 D1, D2 ← In×n

2 k ← 0

3 while ∥D1K̃D21− p′∥1 + ∥(D1K̃D2)
⊤1− q′∥1 ≥ δ

2 do
4 k ← k + 1
5 if k is odd then
6 D1 ← p′/K̃D21
7 else
8 D2 ← q′/(D1K̃)⊤1
9 end if

10 end while
11 P̃ ← D1K̃D2

12 Ŵ ←
∑n

i=1 log(D1)ii(P̃1)i + η−1
∑n

j=1 log(D2)jj(P̃
⊤1)j

13 return D1, D2, Ŵ

We implement the Sinkhorn algorithm in Python, by using a functional representation of K
and K⊤. This allows the user of the function to decide how to perform matrix-vector multipli-
cation: classically, via pre-computed low-rank factorization or any other sophisticated way. The
code is available in a GitHub repository [6].

Application to color transfer
The model We apply it to color transfer between images with the following interpretations.
The spaces X = Y = {1, . . . , n} represent the ordered pixels of the images. The distributions
p = q = 1n/n are uniform, so all pixel represent the same mass of color. A pixel i of the source
image has color xi ∈ [0, 1]3 represented in RGB value, as well for the the colors yj of the target
image. This induce a cost Cij = ∥xi − yj∥22 using euclidean distance. A target pixel color can
then be changed by taking the weighted average of the source pixel colors, according to the mass
transported to this pixel given by the coupling. Explicitly, the weight are the column of the
pixel:

ỹj =
1∑
i Pij

∑
i

Pijxi

2correspond to Algorithm 3 in [1].
Pay attention however to the typo in the stopping criterion: ≤ should be ≥.
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Notice the normalization factor so that we get indeed a convex combination that stay in the
space Y. The original images are presented in Figure [1], with two different sources and one
target.

(a) Source image: Apples (b) Source image: Cat (c) Target image: Big Ben

Figure 1: The original images, of size n = 100× 100

The computation We set η = 15. Changing η is equivalent to re-scale the cost, up to multiply
the objective function by η. So the choice of representation of colors, in [0, 1] or in [0, 256], directly
change the meaning of η. The bigger η is, the less strongly convex the problem is, and so the
slower the convergence is. We choose then η by hand so that it is the biggest possible, according
to our computational resources. We set tolerance at δ = 10−15 and using our Sinkhorn algorithm
and Proposition 1, we obtain an approximate coupling. Notice that by symmetry of the problem
with respect to the source and the target, taking the transpose of the coupling gives us the
coupling for the opposite direction transport, so we don’t need to compute it. The resulting
images are show in Figure [2].

(a) From apples to Big Ben (b) From cat to Big Ben (c) From Big Ben to apples

Figure 2: The new images, of size n = 100× 100

We see that we can clearly recognize the Big Ben, and that the light distribution is kept,
however a little bit uniformly darker (according to the source image). Only the color palette
change, accordingly to the palette of the original image. The minimization of the transport cost
has for effect to link the colors that are near. The minimization of the entropy has for effect to
encourage mixing colors to create the new ones. This effect is traduced by a lower contrast,
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Color transfer with low-rank technique
The implementation of the low-rank strategy for the Sinkhorn algorithm comes down to change
the functions that compute the matrix-vector multiplications of K and K⊤. We use a approx-
imated truncated SVD with the aim of a fast randomized SVD solver from the scikit-learn [5]:
sklearn.decomposition.TruncatedSVD3. We empirically notice that the rank of the Gibbs kernel
K is often very low, in our case it has value 405. This justify even more the use of a low-
rank method, since using full rank will give an exact factorization representation of K, and the
Sinkhorn algorithm will output the exact same value (supposing the truncation is exact), with
the only difference it will be way faster. In practice, the truncation is also an approximation,
and the method give a result near to be equal. We use only a new value, the tolerance value
δ = 10−10. Resulting images in Figure [3].

(a) Source image: Stop
sign (b) With exact kernel

(c) Approximaiton with
rank 25

(d) Approximaiton with
rank 465

Figure 3: New color versions of the apples(Figure [1a])

The Error We see that we cannot observe significant difference. To look numerically the
difference, we plot the coupling max-norm error in function of the rank in Figure [4a].

(a) Coupling error in max-norm (b) Coupling cost

Figure 4: Effects of the low-rank approximation

We see that the error decrease almost exponentially since the y axis is in logarithm scale
and that the curve is near to be straight, a bit convex however. At rank 200 (over 10,000), we

3https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
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already have an error induced by the low-rank approximation, smaller than the tolerance of the
initial computation of the coupling without low-rank approximation. This means that relatively
to the precision of the coupling, the low-rank approximation effect becomes negligible. Since
Sinkhorn algorithm stopping criterion is based on a marginal error tolerance, changing K change
the problem but doesn’t change the quality of the computation, so the cost should not change
much. It is indeed confirmed by Figure [4b].

The time improvement We can now display the computation time gained by using a low-
rank approximations. In Figure [5a], we show the time of computation that the Sinhorn algorithm
takes in function of the rank.

(a) Sinkhorn algorithm (b) Low-rank approximation + Sinkhorn algorithm

Figure 5: Time [s] according to rank approximation

We see that indeed the computation is highly faster, six times more at least for the rank
plotted. Using the time complexity computed before, to look for the rank where an iteration
takes the same time complexity with a matrix or a low-rank factorization, we solve 2mn+n+m =
(2r + 1)(m + n) for n = m = 1002 and get r = 5, 000. So supposing they all have the same
number of iterations 4 , the blue curve should cross the red one around rank 5,000. This is
very high in comparison to the values we used and the actual rank 405. However, in a purely
application perspective and to be perfectly exhaustive we should take into account the time of
computing the low-rank approximation. This is done in Figure [5b]. We see that the low-rank is
still faster but the time increase faster and the threshold where the curves cross is taken down
to 600. For a full rank approximation, we still have almost half of time computation.

An error bound for low-rank optimal transport
We used a low-rank approximation of the Gibbs kernel, computed an approximation of its
Sinkhorn projection, and use it to define a heuristic coupling candidate. By its stopping cri-
terion and its convergence, we know that the Sinkhorn algorithm can give Sinkhorn projection
approximation of arbitrary quality. But with the low-rank approximation, we compute the
Sinkhorn projection of a approximate kernel, i.e. an approximate formulation of the problem. Is
the problem well posed for K in the sense of J. Hadamard?

To understand this, we present the following theorem, corresponding to Theorem 5 of [1]:
4It is not the case since a low-rank matrix could have better convergence properties, but we suppose it to get

an insight of the sizes numbers we are talking about.
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Theorem 1.
If K̃ ∈ Rn×n

>0 approximate K = e−ηC with error

∥ logK − log K̃∥∞ ≤ ϵ′ = min

(
1,

ϵη

50(∥C∥∞η + log n
ηϵ )

)
,

then using tolerance δ = ϵ′ and supposed that Algorithm 1 terminate5, it outputs values D1, D2, Ŵ
such that

|VC(P
η)− VC(P̃ )| ≤ ϵ

2
(4)

|Ŵ − VC(P̃ )| ≤ ϵ

2
(5)

Proof.
Let’s proof (4) first. As stated before, the exact optimal solution is the Sinkhorn projection
of K in the feasible space: VC(P

η) = VC(Π
S(K)) (Corollary 1 in [1]). We decompose the error

by triangle inequality and treat each error term one by one:

|VC(Π
S(K))− VC(P̃ )| ≤ |VC(Π

S(K))− VC(Π
S(K̃))| (6)

+ |VC(Π
S(K̃))− VC̃(Π

S(K̃))| (7)
+ |VC̃(Π

S(K̃))− VC̃(P̃ )| (8)
+ |VC̃(P̃ )− VC(P̃ )| (9)

Term (6): We need to use regularity of ΠS and VC : by Proposition 2 in [1] and hypothesis on
K̃,

∥ΠS(K)−ΠS(K̃)∥1 ≤ ∥ logK − log K̃)∥∞ ≤ ϵ′ ≤ 1.

We get then by Lemma E in [1] that

|VC(Π
S(K))− VC(Π

S(K̃))| ≤ ϵ′∥C∥∞ + η−1ϵ′ log(
2n

ϵ′
).

Term (7) and (9): We need to use the regularity of C 7→ VC . For all Q ∈ ∆n×n we have

|VC(Q)− VC̃(Q)| = |⟨C − C̃,Q⟩| ≤ ∥C − C̃∥∞∥Q∥1 = ∥C − C̃∥∞
= η−1∥ logK − log K̃∥∞ ≤ η−1ϵ′

(This is Lemma C in [1]). In particular, taking alternatively ΠS(K̃) and P̃ for Q, gives

|VC(Π
S(K̃))− VC̃(Π

S(K̃))| ≤ η−1ϵ′

and
|VC̃(P̃ )− VC(P̃ )| ≤ η−1ϵ′

Term (8): The proposition 3 in [1] measure this error. From the stopping criterion in line 6 of
Algorithm 1, ∥P̃1− p′∥1 + ∥P̃⊤1− q′∥1 < ϵ′

2 ≤ 1 and P̃ ∈ ∆n×n so

|VC̃(Π
S(K̃))− VC̃(P̃ )| ≤ ϵ′∥C̃∥∞ + η−1ϵ′ log(

2n

ϵ′
)

5It does, thanks to Theorem 4.2 in [8]
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We can now add all bounds together:

|VC(Π
S(K))− VC(P̃ )| ≤ ϵ′∥C∥∞ + η−1ϵ′ log(

2n

ϵ′
) + 2η−1ϵ′ + ϵ′∥C̃∥∞ + η−1ϵ′ log(

2n

ϵ′
)

= ϵ′(∥C∥∞ + ∥C̃∥∞ + 2η−1 + 2η−1 log(
2n

ϵ′
)).

Since ∥C̃∥∞ ≤ ∥C∥∞ + ∥C̃ − C∥∞ ≤ ∥C∥∞ + η−1ϵ′ ≤ ∥C∥∞ + η−1, we finally get

|VC(Π
S(K))− VC(P̃ )| ≤ ϵ′(2∥C∥∞ + 3η−1 + 2η−1 log(

2n

ϵ′
))

When ϵ′ = min
(
1, ϵη

50(∥C∥∞η+log n
ηϵ )

)
we can show with a bit of algebra (Lemma M in [1]) that

this is indeed smaller than ϵ/2.
Now let’s show (5). By definition, VC̃(P̃ ) = ⟨C, P̃ ⟩ − η−1H(P̃ ). The formula for Ŵ that

is in line 15 of Algorithm 1, rewrite this in a more computationally efficient way6. The proof of
the equivalence is Lemma A in [1]. As a result,

|Ŵ − VC(P̃ )| = |VC̃(P̃ )− VC(P̃ )| ≤ ∥C̃ − C∥∞ ≤ η−1ϵ′ < ϵ/2

Discussion
The results showed that the low rank don’t affect much the quality of the transport, and that
the computation time is significantly reduced. This method is easy to implement and doesn’t
disturb the convergence to a precise coupling. We also noticed empirically that the rank of the
Gibbs kernel is often very low. This should be quantified and understood better, in order to be
able to automatically choose a confident rank without having to do a spectral analysis of the
kernel by hand.

Secondly, we explained that the choice of the cost and in particular the color format have
impact on the weight of the regularization. What is more it that the coordinate representation
of colors change the distances and the notion of proximity in the color space. For example, if we
had taken HSL format, (Hue-Saturation-Lightness) the transport would have probably changed.
Varying this format could be an interesting question for an image processing perspective.
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