
Predicting if two frames are part of the same video

Armelle Hours, Florence Osmont, Benoı̂t Müller
Image and Visual Representation Lab, EPFL, Switzerland

Abstract—In this project, we tackle the problem of pre-
dicting whether two frames come from the same video or
not. The motivation is to assess how similar two images
are, which could find applications, for instance, for story
visualization or video generation. To do so, we use a dataset
of videos, we define a class to dynamically extract a pair
of frames from the same video or from two different ones.
Then, we use the CLIP image encoder (vision transformer) to
extract meaningful image features. We then implement two
classification methods, a cosine similarity based approach
and a neural network with two hidden layers. They take as
input our pair of features, and they output the classification
prediction, i.e. whether the two frames belong to the same
video or not. We find that the cosine similarity method and
the neural network trained for 2 epochs have approximately
the same accuracy of 88%.

I. INTRODUCTION

The motivation behind this project is to be able to
determine if two images are sufficiently similar to be part
of a same consistent sequence of images. Videos usually
have the good property that successive frames represent
a similar scene at different times. They have a notion
of similarity in the sense that they do not necessarily
represent the same disposition of objects or beings, but
they keep the same style during the time: light, colors,
drawing style, background etc... Thus, we’ll use in this
project the similarity criterion ”coming from the same
video”.

To model this motivation, we define our problem as
recognizing if two frames come from the same video. This
defines a binary classification problem, where a sample is
a pair of frames, the positive class indicates that the frames
come from the same video, and the negative class indicates
that the frames come from two different videos.

In this project, we first do a general pre-processing of
the two images independently, and then we compute their
similarity by two different methods: the cosine similarity
and a neural network.

II. MODEL AND METHODS

A. Model
As image encoder to transform our images into features,

we use the pretrained ViT-B/32 model from CLIP. Then
the label is established either by the use of cosine sim-
ilarity or a neural network with two hidden layers, each
containing 250 neurons. This is resumed in figures 1 and
2.

B. Data
The raw data used is a directory of 4,453 videos, with

durations about few minutes. They were extracted from
YouTube at [1].

Image 1

Image 2

CLIP 
image 

encoder

𝑣!

𝑣"

cos(𝑣!, 𝑣")

Threshold 𝑡

> 𝑡

≤ 𝑡

1

0

Figure 1. Cosine similarity based method

Image 1

Image 2

CLIP 
image 

encoder

𝑣!

𝑣"

…
…

… …

1

0

Fully 
connected 

MLP

Figure 2. Neural Network based method

We consider pairs of frames from this video, the label
indicating if they come from the same video. As a first
step, we investigate what is the most adapted data structure
to rely on. To implement this, we create a subclass of
the inbuilt class ”Dataset” of PyTorch. This class takes as
data hyperparameter the time interval between two frames
(used for positive pairs), the number of samples, the ratio
between positive and negative samples and a seed.

Because images can take a lot of memory space, we
decided not to store pairs of frames, but to do it in a
dynamic extracting way. More precisely, our Dataset class
defines how the pairs of frames must be sampled: when
the Dataset object is asked to return a sample, it goes to
the videos directory, extract the desired pair of frames, and
returns it.

To ensure uniformity of sampling according to videos
and frames, we use randomization for the choice of
sampling. The samples need to have well-defined and
deterministic indices, so an external csv file containing
the positions of the pairs of frames could have been used,
but it would have necessitated to build the whole list of
samples at the initialization of the data object, and videos
would have been accessed a second time at the return of
the samples. To read videos properties such as duration

1



and rate of frames per seconds, we need to open the videos
and it takes an unnecessary long time.

Our solution has been to use a pseudo random selection
of the pair of frames, by using the wanted index as a
seed of the random process. This way, the uniformity of
the random process ensures uniform sampling, and the
use of the seed make it a well-defined and deterministic
indexation, that does not need to be computed in advance.

The positive examples are created with two frames
coming from the same video with a 2-second difference.
We use this arbitrary time difference for our positive
samples because the motivation of the project is to say
that two frames in the same video are similar and some
video may change a lot between the beginning and the
end. The negative examples are selected as two random
frames from two random different videos. We used the
library OpenCV to extract these frames.

Since we generate the pairs of frames ourselves, we are
able to choose the positive case rate to be equal to 0.5.
This way, we minimize the risk of having a label bias on
our model by having balanced classes.

All the randomness used in the creation of our data
is governed by the seed entered in the parameters of the
class.

C. Preprocessing

Our pre-processing step is done with the CLIP image
encoder [7] and in particular its model ’ViT-B/32’. CLIP is
trained to extract features from an image jointly with a text
encoder to align the text-encoding and image-encoding of
text-image pairs. Although that is not our goal, it suits
our problem well, as we also want to study the similarity
between images. The CLIP image encoder generates high
quality general features for each frame.

When we call our Dataset class for a specific sample,
it calls the image encoder of CLIP to extract image
features. Since those features are one dimensional, have a
reasonable size but are a bit long to compute, we decided
to save them in a separate folder. Hence, the data set loads
them if they have been already pre-processed.

Clip also normalizes and rescales the images to match
its training configuration.

D. Similarity measures : methods

We use two different methods to measure the similarity
of two images and predict their labels.

1) Cosine Similarity: The first similarity measure that
we use is the cosine similarity on the two features vectors.

We take the cosine similarity (normalized scalar prod-
uct) of the two features obtained with CLIP, and return
the predicted class based on a threshold. We optimize this
threshold to maximize the accuracy on train data. The fact
that the classes are perfectly balanced gives the accuracy
a low risk of being a bad metric . We then measure the
accuracy on the validation set and we also compute the
F1 score.

2) Neural Network: In a second approach, we also
decide to code a multilayer perceptron. Since our features
are 1x512 dimensions tensors, we chose to define our
network with an input layer of 1,024 neurons (to match
the size of 2 stacked feature-vectors), 2 hidden layers with
250 neurons in each, and an output layer consisting of
2 neurons as we are studying a classification problem.
Since we already extracted the features using CLIP, there
was no need for convolution layers. After each layer, the
ReLU activation function is used. The Adam algorithm
is used as the optimizer and the cross-entropy is used
as our loss function. We chose the ReLU because it is
computationally efficient. We chose the Adam optimizer
because it is an improved version of gradient descent
handling well large data (requires less memory and is
efficient). As hyperparameters, we use a batch size of 128;
2 epochs and a learning rate = 5 · 10−3. We chose the
cross-entropy because it suits well classification problems.
If our model outputs the pair (a, b) for a datapoint, its
predicted label is 0 if a > b and 1 otherwise. We also
save our model parameters, the optimizer parameters, the
number of epochs we ran it on and the loss function used
in a .pt file. This would allow us to use this trained model
on future data.

E. Partition of the Dataset

To ensure independence in our data between the train-
validation-test data, we divide our videos in three cor-
responding lists with the ratio 70:15:15. This division
of videos is done only once when the class is created
according to the seed given. All pairs of frames created
within a list are independent from the rest, and the three
data sets induced have independence. Notice that the size
of each three data sets could be chosen independently, but
for consistency with the video splitting and the density
of sampling per video, we use the same ratio 70:15:15
to define the number of pairs of frames in each video
set. Eventually, we considered 10,000 samples, 7,000 for
training, 1,500 for validation and 1,500 for testing.

For cosine similarity, the train set is used to optimize
the threshold. The validation set is used to compute the
metrics associated.

The neural network is trained on the train set and we
use the validation set to compute the accuracy and display
it during optimization.

The test set is used only once, to estimate the metrics
associated to the neural network final model.

III. RESULTS

Cosine Similarity

On the 10, 000 sample train set, we first plot the ROC
curve for various thresholds to get insight of the over
quality of the cosine similarity score, see Figure 3.

We can see that the curve has an overall good area, and
shows almost symmetry with respect to the axe (−1, 1).
The threshold having the best accuracy is plotted on the
curve of Figure 3. We see it induces a higher priority on
true positives than true negatives, which is of interest with

2



5
3

Fal

Figure 3. ROC curve of the cosine similarity

the convention that the class need to be chosen such that
type I errors are less desirable than type II errors. Its value
is around 0.685, and gives an accuracy of 89.3%.

Using this threshold on a 1, 500 validation set, we get an
accuracy of 87.9%. We see that we loose a small amount
of accuracy in the validation set, namely 1.3%, showing
that the model don’t over-fit. As a matter of confirmation
of the fact that our accuracy is meaningful, we compute
the F1-score. It is not very far from the accuracy, at 87.0%.

Neural network

Figure 4. Accuracy of our model depending on the epoch, where we
consider the accuracy at 0.5 epoch as the accuracy of half of our Dataset
during the first epoch (and similarly the accuracy at 1.5 as the accuracy
of half of our dataset during the second epoch)

After the first epoch, the validation set accuracy is of
86% and average loss of 0.3180. After the second epoch,
accuracy of 88% and average loss of 0.3256. As seen in
figure 4, the accuracy of the train set increases as the epoch
increases and in figure 5 the loss decreases as the epoch
increases. This is consistent with the fact our model learns
the more epoch we run it through. We also notice that both

Figure 5. Loss of our model associated to the epoch, where we consider
the loss at 0.5 epoch as the loss of half of our Dataset during the first
epoch (and similarly the loss at 1.5 as the loss of half of our dataset
during the second epoch)

slopes stabilize after the 1st epoch. This means that our
model doesn’t learn significantly more when we run it by
2 epochs than when we run it by one. This phenomenon
is also observed when looking at the validation set curve.
One hypothesis could be that we get our tensor features
using the machine learning model CLIP which has been
trained on a very large scale Dataset, so a large part of
image processing might’ve already been done by the image
encoder. Moreover, after applying our model on the test
set, we had again an accuracy of 88% and an average loss
of 0.3186.

IV. DISCUSSION

One original feature of our code is that it takes as
data the videos themselves, and not an already sampled
data consisting of fixed pairs of frames. As a result, the
data can easily be changed, refined with new videos in
mp4 format, and the size of our Dataset can easily be
increased.

As mentioned in the introduction, the motivation of the
project is to assess how similar two images are, among
others by recognizing the style of a created image: light,
colors, drawing versus picture, etc...

However, this puts into light the issue of how precise
do we want to be with our predictions. If we consider
two frames to be similar but the lighting is different, what
should our methods output?

The time interval chosen between two frames of the
same video could be studied according to this purpose. If
it is too short, the frames could be too similar and the
generated images could never be categorized as similar.
If it is too long, the frames will not have enough in
common and would confuse our prediction task, or the
generated frames could always be categorized as similar.
For example, two frames taken from the same video but
from different shots can be totally different. A study of
the set of video could also be done, to select the ones that
have a suitable frequency of cuts or a suitable frame style
consistency.

3



V. SUMMARY

To conclude, we created our Dataset dynamically by ex-
tracting pairs of frames from the same video with constant
time interval or from different videos. We also used seeds
for consistency. We then used the CLIP image encoder in
the pre-processing part to extract general features for each
frame, and we stored them in files to save on computation
time. The cosine similarity with an optimal threshold gives
us the same accuracy as running our data through a Neural
Network for 2 epochs. That accuracy is approximately
88% which is high. That might be because CLIP does
a large part of the image processing. Further research
questions could be if choosing a smaller time interval
increases the accuracy, to what extent does our methods
generalize for frames that do not belong to videos and to
what extent is the similarity criterion ”belonging to the
same video” strong.

ACKNOWLEDGEMENTS

The authors thank Martin Nicolas Everaert for his
helpful suggestions and weekly discussions.

REFERENCES

[1] Various authors. Trending YouTube Video Statistics.
2018. URL: https : / / www. kaggle . com / datasets /
datasnaek/youtube-new?select=USvideos.csv.

[2] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s
Journal of Software Tools (2000).

[3] Charles R. Harris et al. “Array programming
with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357–362. DOI: 10.1038/s41586- 020- 2649- 2.
URL: https://doi.org/10.1038/s41586-020-2649-2.

[4] J. D. Hunter. “Matplotlib: A 2D graphics environ-
ment”. In: Computing in Science & Engineering 9.3
(2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[5] TorchVision maintainers and contributors. TorchVi-
sion: PyTorch’s Computer Vision library. Nov.
2016. URL: https://github.com/pytorch/vision.

[6] Nicki Skafte Detlefsen et al. TorchMetrics - Mea-
suring Reproducibility in PyTorch. Feb. 2022. DOI:
10 . 21105 / joss . 04101. URL: https : / / github. com /
Lightning-AI/metrics.

[7] OpenAI. CLIP. 2021. URL: https :
/ / github . com / openai / CLIP / tree /
d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.

[8] Adam Paszke et al. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Ad-
vances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc.,
2019, pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an- imperative- style-high-
performance-deep-learning-library.pdf.

[9] Robyn Speer. ftfy. Zenodo. Version 5.5. 2019. DOI:
10.5281/zenodo.2591652. URL: https://doi.org/10.
5281/zenodo.2591652.

[10] P Umesh. “Image Processing in Python”. In: CSI
Communications 23 (2012).

4

https://www.kaggle.com/datasets/datasnaek/youtube-new?select=USvideos.csv
https://www.kaggle.com/datasets/datasnaek/youtube-new?select=USvideos.csv
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://github.com/pytorch/vision
https://doi.org/10.21105/joss.04101
https://github.com/Lightning-AI/metrics
https://github.com/Lightning-AI/metrics
https://github.com/openai/CLIP/tree/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
https://github.com/openai/CLIP/tree/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
https://github.com/openai/CLIP/tree/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.2591652
https://doi.org/10.5281/zenodo.2591652
https://doi.org/10.5281/zenodo.2591652

	Introduction
	Model and Methods
	Model
	Data
	Preprocessing
	Similarity measures : methods
	Cosine Similarity
	Neural Network

	Partition of the Dataset

	Results
	Discussion
	Summary

