
Computational Linear Algebra
Nonnegative Matrix Factorization

Benoît Müller

October 2023

Question a)
In the following code, we implement an alternating optimization algorithm, using the multiplicative
update (MU) rules for W, H described in Theorem 1 of [3]:
NMF.m :

function [W,H, err, time] = NMF(V,W0,H0,tol,maxit)
tic;
W = W0;
H = H0;
err = zeros(maxit+1,1);
time = zeros(maxit+1,1);
i = 2;
err(i) = norm(V-W*H,'fro');
time(i) = toc;
while(abs(err(i)-err(i-1))>tol && time(i)<maxit)

i = i+1;
H = H.*(W'*V)./(W'*W*H);
W = W.*(V*H')./(W*H*(H'));
err(i) = norm(V-W*H,'fro');
time(i) = toc;

end
err = err(2:i);
time = time(2:i);
end

Question b)
We apply our algorithm to the face data base example in [4] with the following code: begining of
question_b.m :

m = 361;
n1 = 472;
n2 = 2429;
V1 = zeros(m,n1);
V2 = zeros(m,n2);
r = 7^2;
% load the images:
for i = 0:n1-1

1



Thomas Renard Nonnegative Matrix Factorization

image = imread(sprintf("face/cmu_%04d.pgm",i));
V1(:,i+1) = image(:);

end
for i = 1:n2

image = imread(sprintf("face/face%05d.pgm",i));
V2(:,i) = image(:);

end
% compute the factorization:
W0 = rand(m,r);
H0 = rand(r,n1);
tol = 1e-4;
maxit = 60;
[W,H,err,time] = NMF(V1,W0,H0,tol,maxit);
errrelat = (err-min(err))/(err(1)-min(err));

% shape a matrix to show the images:
W_mat = zeros(sqrt(r)*sqrt(m),sqrt(r)*sqrt(m));
a = sqrt(r);
b = sqrt(r);
col = 1;
for i = 1:a

for j = 1:b
W_mat(((i-1)*sqrt(m)+1):(i*sqrt(m)), ((j-1)*sqrt(m)+1):(j*sqrt(m)))...
= reshape(W(:,col),sqrt(m),sqrt(m));
col = col+1;

end
end
figure
imshow(W_mat)

% test set done separately:
W1 = rand(m,r);
H1 = rand(r,n2);
tol = 1e-4;
maxit = 60;
[Wb,Hb,errb,timeb] = NMF(V2,W1,H1,tol,maxit);
errrelatb = (errb-min(errb))/(errb(1)-min(errb));

% test set done separately:
W_matb = zeros(sqrt(r)*sqrt(m),sqrt(r)*sqrt(m));
a = sqrt(r);
b = sqrt(r);
col = 1;
for i = 1:a

for j = 1:b
W_matb(((i-1)*sqrt(m)+1):(i*sqrt(m)), ((j-1)*sqrt(m)+1):(j*sqrt(m))) ...
= reshape(Wb(:,col),sqrt(m),sqrt(m));
col = col+1;

end
end
figure
imshow(W_matb)
%R = W*H;
%im = R(:,1);

We plot the resulting basis of faces in an image:

2



Thomas Renard Nonnegative Matrix Factorization

Figure 1: Basis a faces induced by the factorization done with NMF

Even if it is started at a random matrix, Figure [1] shows that the basis of the factorization is
made of recognizable images: it contain different versions of mouths, noses, eyes, and some other facial
parts. To check the efficiency of the factorization, we can compute WH:,j and compare it with the
original image V:,j

Question c)
We will use the notation ∥.∥ for the Frobenius matrix norm:

∥A∥ =

√∑
i,j

A2
ij .

The matrix operators ⊙ and ⊘ denote respectively the element-wise product and division:

(A⊙B)ij = AijBij

(A⊘B)ij =
Aij

Bij

3



Thomas Renard Nonnegative Matrix Factorization

Theorem 1. The Frobenious norm ∥V −WH∥ is nonincreasing under the folwing updates:

H 7→ H ⊙ (W⊤V )⊘ (W⊤WH),W 7→ W ⊙ (V H⊤)⊘ (WHH⊤)

and the value of the norm is invariant under these updates if and only if W and H are stationary
points.

The general idea of the proof is the use of an auxiliary function, and therefore we have to introduce
to definition of an auxiliary function, and then we give two lemmas about this type of functions that
will be used to prove the theorem.

Definition 1. G(h, h′) is an auxiliary function for F (h′) if the conditions

G(h, h′) ≥ F (h)

G(h, h) = F (h)

are satisfied.

The following lemma is the key of the proof of theorem 1, and is by itself the reason why we use
this useful concept of auxiliary function.

Lemma 1. If G is an auxiliary function, the F is non-increasing under the update :

ht+1 = argmin
h

G(h, ht)

Proof. From the definition of an auxiliary function we have F (ht+1) ≤ G(ht+1, ht), but following from
the definition of ht+1, we immediately have G(ht+1, ht) ≤ G(ht, ht) = F (ht), where the last equality
also comes from the definition of an auxiliary function.

We observe that F (ht+1) = F (ht) if ht is a local minimum of G(h, ht). If the derivatives of F
exist and are continuous in a small neighborhood of ht, we deduce that ∇F (ht) = 0 . Therefore, if
we iterate the update from the lemma 1, we obtain a sequence of estimates that has to converge to a
local minimum hmin = argminh F (h) of the objective function.

Lemma 2. With K(ht) the diagonal matrix Kij(h
t) = δij

(W⊤Wht)i
ht
i

, we have that

G(h, ht) = F (ht) + (h− ht)∇F (ht) +
1

2
(h− ht)⊤K(ht)(h− ht)

is an auxiliary function for

F (h) =
1

2
∥v −Wh∥2

Proof. We directly see that G(h, h) = F (h) + 0 + 1
20 = F (h),

so it remains to show that G(h, ht) ≥ F (h). The function G is defined to look like a quadratic Taylor
expansion of F centered in h. We want then to compare then the quadratic term with the actual
hessian. We first compute the gradient of F :

F (h+ ϵd)− F (h)

ϵ
=

1

2ϵ
∥v −W (h+ ϵd)∥2 − 1

2ϵ
∥v −Wh∥2

=
1

2ϵ
(∥v −Wh∥2 − 2(v −Wh)⊤Wϵd+ ∥ϵd∥2)− 1

2ϵ
∥v −Wh∥2

= (Wh− v)⊤Wd+ ϵ
1

2
∥d∥2

−−−→
ϵ→0

(v −Wh)⊤Wd

= (W⊤(Wh− v))⊤d

= (W⊤Wh−W⊤v)⊤d.

4



Thomas Renard Nonnegative Matrix Factorization

As a result we get ∇F (h) = W⊤(Wh − v) = W⊤Wh − W⊤v, from which we see the form of the
hessian ∇2F (h) = W⊤W . We conclude that F admit the exact finite Taylor development

F (h) = F (ht) + (h− ht)W⊤∇F (h) +
1

2
(h− ht)⊤W⊤W (h− ht),

and it differ from the definition of G only for the quadratic term:

G(h, ht)− F (h) = (h− ht)⊤(K(ht)−W⊤W )(h− ht)

and it is nonnegative for any h, ht if and only if K(ht)−W⊤W is semipositive definite. We find that

h⊤K(ht)h =
∑
ij

h⊤
i Kij(h

t)hj

=
∑
ij

hiδij
(W⊤Wht)i

ht
i

hj

=
∑
i

hi
(W⊤Wht)i

ht
i

hi

=
∑
i

h2
i

∑
j(W

⊤W )ijh
t
j

ht
i

=
∑
ij

h2
i

ht
j

ht
i

(W⊤W )ij

=
∑
ij

(hi

ht
i

)2

ht
jh

t
i(W

⊤W )ij

=
∑
ij

1

2

((hi

ht
i

)2

+
(hj

ht
j

)2
)
ht
jh

t
i(W

⊤W )ij (mean with the transposed summing)

≥
∑
ij

hi

ht
i

hi

ht
i

ht
jh

t
i(W

⊤W )ij (Young inequality)

=
∑
ij

hi(W
⊤W )ijhj

= h⊤W⊤Wh.

This proves indeed the semipositivity since 0 ≤ h⊤K(ht)h − h⊤W⊤Wh = h⊤(K(ht) −W⊤W )h, we
obtain G(h, ht) ≥ F (h), and G is an auxiliary function.

Now we come to the proof of the theorem :

Proof. Recall the result of the lemma 1, i.e ht+1 = argminh G(h, ht). We replace in this equation
G(h, ht) by the result from lemma 2, which is :

G(h, ht) = F (ht) + (h− ht)∇F (ht) +
1

2
(h− ht)⊤K(ht)(h− ht)

And now we get that ht+1 = ht−K(ht)−1∇F (ht). Indeed, minimizing G with respect to h is a convex
optimisation problem, which can be solved by computing the gradient of G, and solving ∇G(h, ht) = 0,
to get ht+1.
Since G is an auxiliary function, we get that F is non-increasing under this update rule, according to

5



Thomas Renard Nonnegative Matrix Factorization

lemma 1.
We now have :

ht+1 = ht −K(ht)−1∇F (ht)

=⇒ ht+1 = ht − 1

2
K(ht)−1∥v −Wht∥2

=⇒ ht+1
a = ht

a

(WT v)a
(WTWht)a

Where the last equality is obtained by a direct computation and using the fact that K(ht) is a diagonal
matrix and thus its inverse is defined by Kab(h

t)−1 = δab
ht
a

(WWTht)a
.

Now to end the proof, we reverse the roles of W and H in lemma 1 and 2, and similarly, F can be
shown to be non-increasing under the update rules for W .

Question d)
We implement in the following code the acceleration technique described in Algorithm 3 of [2] for the
MU rule from question a). We use the parameters α = 2 and ϵ = 0.1.
ANMF.m :

function [W,H,err, time] = ANMF(V,W0,H0,tol,maxit,alpha,epsilon)
tic;
W = W0;
H = H0;
K = nnz(V);
n = size(H0);
n = n(2);
m = size(W0);
m = m(1);
r = size(W0);
r = r(2);
rhow = 1+ (K+n*r)/(m*r+m);
rhoh = 1+ (K+m*r)/(n*r+n);
err = zeros(maxit+1,1);
time = zeros(maxit+1,1);
maxw = floor(1+alpha*rhow);
maxh = floor(1+alpha*rhoh);
i = 2;
err(i) = norm(V-W*H,'fro');
time(i) = toc;
while(abs(err(i)-err(i-1))>tol && time(i)<maxit )

i = i+1;

A = V*H';
B = H*H';
W_iter = W;
W_1 = W_iter.*(A./(W_iter*B));
W_l = W_1;
for j = 2:maxw

W_old = W_l;
W_l = W_l.*(A./(W_l*B));
if norm(W_l-W_old,'fro') <= epsilon*norm(W_1-W_iter,'fro')

break
end

6



Thomas Renard Nonnegative Matrix Factorization

end
W = W_l;

A = W'*V;
B = W'*W;
H_iter = H;
H_1 = H_iter.*(A./(B*H_iter));
H_l = H_1;
for j = 2:maxh

H_old = H_l;
H_l = H_l.*(A./(B*H_l));
if norm(H_l-H_old,'fro') <= epsilon*norm(H_1-H_iter,'fro')

break
end

end
H = H_l;
err(i) = norm(V-W*H,'fro');
time(i) = toc;

end
err = err(2:i);
time = time(2:i);

end

We now show the resulting new basis as well as how this accelerated MU algorithm compare in terms
of time and approximation error to the standard MU algorithm. Here is the code:
Suite of question_b.m :

%imshow(im,[])

% compute the accelerated factorization:
alpha = 2;
epsilon = 0.1;
[Wa,Ha,erra,timea] = ANMF(V1,W0,H0,tol,maxit,alpha,epsilon);
errrelata = (erra-min(erra))/(erra(1)-min(erra));

% shape a matrix to show the images:
W_mata = zeros(sqrt(r)*sqrt(m),sqrt(r)*sqrt(m));
a = sqrt(r);
b = sqrt(r);
col = 1;
for i = 1:a

for j = 1:b
W_mata(((i-1)*sqrt(m)+1):(i*sqrt(m)), ((j-1)*sqrt(m)+1):(j*sqrt(m))) ...
= reshape(Wa(:,col),sqrt(m),sqrt(m));
col = col+1;

end
end
figure
imshow(W_mata)

% test set done separately:
[Wba,Hba,errba,timeba] = ANMF(V2,W1,H1,tol,maxit,alpha,epsilon);
errrelatba = (errba-min(errba))/(errba(1)-min(errba));

% shape a matrix to show the images:
W_matba = zeros(sqrt(r)*sqrt(m),sqrt(r)*sqrt(m));
a = sqrt(r);

7



Thomas Renard Nonnegative Matrix Factorization

b = sqrt(r);
col = 1;
for i = 1:a

for j = 1:b
W_matba(((i-1)*sqrt(m)+1):(i*sqrt(m)), ((j-1)*sqrt(m)+1):(j*sqrt(m))) ...
= reshape(Wba(:,col),sqrt(m),sqrt(m));
col = col+1;

end
end
figure
imshow(W_matba)

% plots of the errors:
figure
semilogy(time(1:500),errrelat(1:500))
hold on
semilogy(timea(1:500),errrelata(1:500))
hold off
title('Convergence of the relative error for the test set')
xlabel('time')
ylabel('error')
legend('MU','Accelerated MU')

figure
semilogy(timeb(1:500),errrelatb(1:500))
hold on
semilogy(timeba(1:500),errrelatba(1:500))
hold off
title('Convergence of the relative error for the train set')
xlabel('time')
ylabel('error')
legend('MU','Accelerated MU')

%R = W*H;

We obtain the Figure [2] which show the same properties as before, we get images representing faces,
with the difference that the matrix are more sparse, indicating that the algorithm isolate more strongly
the parts of the faces that are selected:

8



Thomas Renard Nonnegative Matrix Factorization

Figure 2: Basis a faces induced by the factorization done with ANMF

For the error, since the Frobenius error doesn’t converge to zero, we plot the relative error: we
translate by subtracting the minimum value of both curves and rescale by the first value (it is the
same for both curves) so it begins at one. Here is the plot in Figure [3]:

9



Thomas Renard Nonnegative Matrix Factorization

Figure 3: Evolution of the relative error during time

We see that the error is way better in term of time for the accelerated version. The value obtained
by the simple method after 30 second is attained by the accelerated method after only two or three
seconds.

10



Thomas Renard Nonnegative Matrix Factorization

Appendix

Figure 4: Basis of faces resulting from NMF for the test set

11



Thomas Renard Nonnegative Matrix Factorization

Figure 5: Basis of faces resulting from ANMF for the test set

12



Thomas Renard Nonnegative Matrix Factorization

Figure 6: Evolution of the relative error during time for the test set

References
[1] MIT Center For Biological and Computation Learning. CBCL Face Database. url: http://www.

ai.mit.edu/projects/cbcl.old/.

[2] N. Gillis and F. Glineur. “Accelerated multiplicative updates and hierarchical ALS algo- rithms
for nonnegative matrix factorization”. In: Neural Computation, 24(4) (2012), pp. 1085–1105.

[3] Daniel D. Lee and H. Sebastian Seung. “Algorithms for Non-negative Matrix Factorization”. In:
Advances in Neural Information Processing Systems (13) (2003), pp. 556–562.

[4] Daniel D. Lee and H. Sebastian Seung. “Learning the parts of objects by non-negative matrix
factorization”. In: Nature (401) (1999), pp. 788–791.

13

http://www.ai.mit.edu/projects/cbcl.old/
http://www.ai.mit.edu/projects/cbcl.old/

