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Remarks on the code
The code contains 9 files: f.m, make_prob.m, G_LF.m, G_Roe.m, shallow_water.m,
problem1.m, problem2.m, problem3.m, and problem4.m.

The organization of the code is the following: the central function is shallow_water.m, it contain
the loops that the methods make. The parameters are three structures that encapsulate the problem,
the numerical method, and the display options (resp. prob, meth, show). We use make_problem.m
to make the structure prob that shallow_water.m will use. The functions G_LF.m and G_Roe.m

define the methods with to the flow f.m, and will be used by shallow_water.m by passing them in
the parameter meth. Details are given in the rest of this document. The files problem"x".m are the
runable scripts, they have the name of the problem and have cells that can be runned independently.

Problem 1

(a)
We set Ω = [a, b] = [0, 2], ∆x = (b − a)/N , xj = a + jh, ∀j ∈ {0, . . . , N} and the midpoints
xj+1/2 = a+ (j + 1/2)∆x, ∀j ∈ {−1, . . . , N}. The equation can be writen

qt + f(q)x = S

. The time dimension will be discretised by times 0 = t0 < tn < · · · < tnmax = T and the values of the
step are computed during the process. We discretize the derivatives with finite differences. The time
derivative is aproximated by a variation of a forward finite difference:

Qn+1
j − 1

2 (Q
n
j−1 +Qn

j−1)

∆t

, and the space derivative by a centered finite difference:

f(Qn
j+1)− f(Qn

j−1)

2∆x
.

Putting this together and by approximating S(xj , t
n) by a Sn

j , it gives

Qn+1
j − 1

2 (Q
n
j−1 +Qn

j−1)

∆t
+

f(Qn
j+1)− f(Qn

j−1)

∆x
= Sn

j ,

and explicitely

Qn+1
j =

1

2
(Qn

j−1 +Qn
j−1)−

∆t

2∆x
(f(Qn

j+1)− f(Qn
j−1)),

or in a conservative form
Qn+1

j = Qn
j − λ(Fn

j+1/2 − Fn
j−1/2),

with λ = ∆x
∆t and Fn

j+1/2 = 1
2 (f(Q

n
j ) − f(Qn

j+1)) − 1
2λ (Q

n
j+1 + Qn

j ), where we recognise the Lax-
Friedrichs flux. We will keep the first explicit description for the code because it is more efficient
to calculate than the conservative form which add and substrate the term Qn

j . The value of ∆t
must be small enough for the scheme to be monotone and it is given by the CFL condition: k <
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∆x/max ∥f ′∥. A computation of the jacobian of f and it’s matrix norm by spectral decomposition
show that ∥f ′((q))∥ = max(|u ±

√
gh|) < |u| +

√
gh, so we discretise it to find the value of the max

and multiply by CFL:

∆t = k = CFL
∆x

maxj(|un
j |+

√
ghn

j )
,

with Qn
j = (hn

j ,m
n
j )

⊤ and un
j = mn

j /h
n
j .

(b)
The function f is implemented:

1 function F=f(h,m)
2 % the function flux of the equation
3 g=1;
4 F= [m; m.^2./h + 0.5*g*h.^2];
5 end

and the problem is defined in a structure prob by the function make_prob(we will need the problem
multiple times):

1 function prob = make_prob(question)
2 % build the structure prob that describe a problem
3 % prob contain the initial condition q_0,
4 % (sometimes) the true solution q_true, the source S, the limit time T,
5 % and the type of boundary condition bound.
6 periodic_bound = @(Q) [Q(:,end), Q, Q(:,1)];
7 open_bound = @(Q) [Q(:,1), Q, Q(:,end)];
8 switch question
9 case "1a"

10 u=0.25;
11 g=1;
12 h0 = @(x) 1 + 0.5*sin(pi*x);
13 m0 = @(x) u*h0(x);
14 h_true = @(x,t) h0(x-t);
15 m_true = @(x,t) u*h_true(x,t);
16

17 prob.q0 = @(x) [h0(x); m0(x)];
18 prob.q_true = @(x,t) [h_true(x,t); m_true(x,t)];
19 prob.S= @(x,t) pi/2*cos(pi*(x-t)) .* ...
20 [(u-1)*ones(1,length(x)) ; u^2-u+g*h0(x-t)];
21 prob.T=2;
22 prob.bound=periodic_bound;

We implement the scheme step in the function G_LF, where we ask the structure meth to contain Q

the current (Qn
j )j , t the current time, x the discretized points of cell size ∆x =dx

1 function meth = G_LF(prob, meth)
2 % lax-Friedrichs scheme
3 % return the structure meth with Q and t updated
4 g=1;
5 CFL=0.5;
6 Qext = prob.bound(meth.Q);
7 int=2:(meth.N+2);
8 uu= meth.Q(2,:)./meth.Q(1,:);
9 gradnorm = max( abs(uu) + sqrt(g*meth.Q(1,:)));

10 k = CFL*meth.dx / gradnorm;
11 if meth.t+k<=prob.T % it is not exceeding T or we reached it already
12 lambda = CFL / gradnorm; %=k/dx;
13 else % it is not exceeding T
14 k= prob.T-meth.t;
15 lambda= k/meth.dx;
16 end
17 flux= f(Qext(1,:),Qext(2,:));
18 SS= prob.S(meth.x,meth.t+k/2);
19 meth.Q= 0.5*(Qext(:,int+1) + Qext(:,int-1))...
20 -0.5*lambda*(flux(:,int+1) - flux(:,int-1)) + k*SS;
21 meth.t= meth.t + k;
22 end

2



MATH-459 – Numerical Methods for Conservation Laws: Project 1 Benoît Müller

We use them now in the function shallow_water implemented in the following code, where we ask
the structure show to specify if we want to plot the evolution or not (show.yes) and with which
frequency (show.freq). We return the data in a copy of the structure meth in which we added the
results obtained.

1 function meth = shallow_water(prob, meth, show)
2 % compute the numerical solution to the water-shallow equation
3 % defined by prob with the method defined by meth and display with the
4 % conditions of cond.
5 % prob must contain: q_0, S, T, q_true(optional)
6 % meth must contain: N, G
7 % show must contain: yes, freq(if yes=1)
8 % return meth with Q at t=T
9 a=0;

10 b=2;
11 meth.dx=(b-a)/meth.N;
12 meth.x=a:meth.dx:b;
13 meth.t=0;
14 meth.Q=prob.q0(meth.x);
15 iter = 0;
16 if show.yes==1
17 plot_every= meth.N / show.freq;
18 end
19 while meth.t<prob.T - 1e-10
20 meth = meth.G(prob, meth);
21 if show.yes==1 && (mod(iter,plot_every)==0||abs(meth.t-prob.T)<1e-10)
22 figure(1)
23 title("test")
24 subplot(2,1,1)
25 area(meth.x,meth.Q(1,:),'LineWidth',2);
26 xlim([0 2]); ylim([0 1.5]); %[0 2]
27 if isfield(prob,"q_true")
28 Q_true= prob.q_true(meth.x,meth.t);
29 hold on
30 plot(meth.x,Q_true(1,:),'LineWidth',2)
31 legend('Numerical h','Exact h');
32 hold off
33 end
34 grid on;
35 title(['Time = ',num2str(meth.t)]);
36 xlabel("x")
37 ylabel("h(x)")
38

39 subplot(2,1,2)
40 plot(meth.x, meth.Q(2,:),'LineWidth',2);
41 xlim([0 2]); ylim([-1 0.5]); %[-1 1]
42 if isfield(prob,"q_true")
43 hold on
44 plot(meth.x,Q_true(2,:),'LineWidth',2);
45 legend('Numerical m','Exact m');
46 hold off
47 end
48 grid on;
49 title(['Time = ',num2str(meth.t)]);
50 xlabel("x")
51 ylabel("m(x)")
52 end
53 iter=iter+1;
54 end
55 end

We have now all the tools that we need and write a script to test the code. We first show the evolution
of the solution for a chosen ∆x and then show the error in a log-plot when we increase it. The error
is computed with the norm

∥Qn∥∆x,1 =
∥∥∥∥(hn,mn)∥2

∥∥∥
∆x,1

= ∥
√

(hn)2 + (mn)2∥∆x,1 = ∆x
∑
j

√
(hn

j )
2 + (mn

j )
2,

and we compute it for the quantity (Qn
j − q(xj , t

n))j . Namely, we compose the L1 norm on the
sequences with the euclidean norm on the R2 space.
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1 %% Problem 1.a): display the evolution
2 clear
3 prob1a = make_prob("1a");
4 meth.N=500;
5 meth.G= @(prob,meth) G_LF(prob,meth);
6 show.yes=1;
7 show.freq=40;
8

9 meth=shallow_water(prob1a, meth, show);
10

11 %% Problem 1.b): display the error
12 clear
13 prob1a = make_prob("1a");
14 meth.G= @(prob,meth) G_LF(prob,meth);
15 show.yes=0;
16 NN=floor(logspace(2,3.5,10)); %mets (2,3,10)
17 error=[];
18 for N=NN
19 meth.N=N;
20 meth= shallow_water(prob1a, meth, show);
21 Q_true= prob1a.q_true(meth.x,prob1a.T);
22 norm=sqrt(sum((Q_true - meth.Q).^2,1)); % ||.||_2 norm for each point
23 norm= meth.dx*sum(norm); % ||.||_1,h norm of all points
24 error=[error, norm];
25 end
26 loglog(2./NN,error,'.-')
27 slope=log(error(end)/error(1))/log(NN(1)/NN(end));
28 title("\bf Problem 1.b): Error of the scheme at $T=2$" + ...
29 " as a function of $\Delta x$, the slope is "+num2str(slope), 'interpreter','latex')
30 xlabel("$\bf \Delta x$",'interpreter','latex')
31 ylabel("$\bf Error$",'interpreter','latex')

We obtain the following results:
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Figure 1: Plot of the solution at T=2 with the Lax-Friedrichs method.
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Figure 2: Plot of the solution at T=2 with the Lax-Friedrichs method.

and see that the error converge, with order one.

Problem 2

(a)
We continue the function make_prob for these two new conditions:

1 case "2a5"
2 h0 = @(x) 1 - 0.1*sin(pi*x);
3 m0 = @(x) zeros(size(x));
4 prob.q0 = @(x) [h0(x); m0(x)];
5 prob.S= @(x,t) zeros(size(x));
6 prob.T=2;
7 prob.bound=periodic_bound;
8 case "2a6"
9 h0 = @(x) 1 - 0.2*sin(2*pi*x);

10 m0 = @(x) 0.5*ones(size(x));
11 prob.q0 = @(x) [h0(x); m0(x)];
12 prob.S= @(x,t) zeros(size(x));
13 prob.T=2;
14 prob.bound=periodic_bound;

and write the script file that will display the evolution of the solutions at the final state at T = 2.

1 %% Problem 2.a) display the evolution
2 clear
3 prob2a=make_prob("2a6"); %2a5 or 2a6
4 meth.G= @(prob,meth) G_LF(prob,meth);
5 meth.N=10000;
6 show.yes=1;
7 show.freq=10;
8 Q6=shallow_water(prob2a, meth, show);

We see that for conditions (5), the function that was smooth stay smooth, and all along the process
(see the animated plot):
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Figure 3: Plot of the solution at T=2 with the Lax-Friedrichs method and conditions (5.
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Figure 4: Plot of the solution at T=2 with the Lax-Friedrichs method for various ∆x.

However, for the conditions (6), the solution become more and more discontinuous and we see
chock waves appear:

6



MATH-459 – Numerical Methods for Conservation Laws: Project 1 Benoît Müller
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Figure 5: Plot of the solution at T=2 with the Lax-Friedrichs method.
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Figure 6: Plot of the solution at T=2 with the Lax-Friedrichs method for various ∆x.

(b)
we write a similar code as problem 1.b) using a reference solution obtained with a fine mesh. To
compare solutions with different meshes of N cells, we choose the N so they are multiple of the
smallest one. Like so, all points of the less fine mesh are on the other too. Indeed if M = cN , then
the points of the N -mesh x(N)j = a + j(b − a)/N = a + cj(b − a)/M = x(M)cj are points of the
M -mesh. We take the same error as before and we understand the substraction (Q(N)−Q(M))j as
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Q(N)j −Q(M)cj , so that the error is

∆x(N)
∑
j

∥Q(N)nj −Q(M)ncj∥2 =
b− a

N

∑
j

∥Q(N)nj −Q(M)ncj∥2

We obtain the following plot, and see that for condtitions (5), the error converge, it seems with order
one.
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Figure 7: Plot of the error with the Lax-Friedrichs method for various ∆x with conditions (5).

For the conditions (6), the convergence has an order smaller, however we see that we don’t have
a perfect straight line and that the slope get bigger and bigger as we decrease ∆x. Maybe this is
because we compare with a numerical solution and that we have shocks that the error isn’t of order
one as the theory tell us.
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Figure 8: Plot of the error with the Lax-Friedrichs method for various ∆x with conditions (6).
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Problem 3

(a)
Godunov order barrier theorem tel us that schemes that are linear and monotonicity preserving are at
most first order; monotone schemes are at most first order too. As a result, we must search for a more
complex method to find a faster convergence. Godunov scheme is a candidate to do so. The basic
scheme structure doesn’t approximate any quantity and is exact. We have the freedom to compute or
approximate the Riemann problem, as well as the integrals that we need. Depending on the quality
of our approximations, one can hope having a better convergence than order one.

(b)

The Roe matrix Â must satisfy Â(qr−ql) = fr−fl. We note generally ∆ϕ = ϕr−ϕl and ϕ̄ = (ϕr+ϕl)/2
for any ϕ. Suppose we introduce a parameter vector z, such that the the jump in q and f can be
expressed in terms of the jump in z: ∆q = B∆z, ∆f = C∆z. Then clearly we can choose Â = CB−1.
We try with z = h−1/2q = (h/

√
h,m/

√
h). We first see that (h,m) = (z21 , z1z2). Now, using

∆(ab) = ā∆b+ b̄∆a,

∆q = (∆h,∆m) = (2z̄1∆z1, z̄1∆z2 + z̄2∆z1) =

(
2z̄1 0
z̄2 z̄1

)
∆z =: B∆z

Similarily, we see f = (m,m2/h+ gh2/2) = (z1z2, z
2
2 + gz21/2), and again

∆f = (z̄1∆z2 + z̄2∆z1, 2z̄2∆z2 + gz̄1∆z1) =

(
z̄2 z̄1
gz̄1 2z̄2

)
∆z =: C∆z.

We can then compute

CB−1 =

(
z̄2 z̄1
gz̄1 2z̄2

)(
2z̄1 0
z̄2 z̄1

)−1

=

(
z̄2 z̄1
gz̄1 2z̄2

)(
z̄1 0
−z̄2 2z̄1

)
(2z̄1

2)−1 =

(
0 1

gz̄21 − (z̄2/z̄1)
2 2z̄2/z̄1

)
=: Â.

The Jacobian flux is
f ′(q) =

(
0 1

−m2/h2 + gh 2m/h

)
and we see that since z21 = h and z2/z1 = m/h, if ql,qr → q, so does Â → f ′(q), so Â is consistent.

(c)
Godunov’s method can be outlined in two steps. Suppose we have an approximation Qn, (i) Define
q̃(x, t) for all x and tn < t < tn+1 = tn+k as the exact solution to the conservation law q̃t+f(q)x = S,
satisfying the initial condition q̃(x, tn) = Qn

j , ∀x ∈]xj−1/2, xj+1/2[. Average the resulting function
Q̃(x, tn+1) over each cell (xj−1/2, xj+1/2) to obtain the approximation

Qn+1 =
1

∆x

∫ xj+1/2

xj−1/2

q̃(x, tn+1)dx

at tn+1. Now this procedure can be repeated to advance to the next time-step. In Step (i), we need to
solve an exact Riemann problem at each cell-interface, over a small time interval ]tn, tn+1[. Since q̃n

is a solution to a balance equation, it is similar to a conservation law, but inhomogeneous. However,
we can do the same procedure to find the integral form of the conservative law. We just integrate
along space and time, and use the hypothesis on the solution. In this case, the linearity of the integral
allow us to see that there is almost the same law, with the difference that we have the integral in S
to add. We rewrite indeed Qn+1 as

1

∆x

∫ xj+1/2

xj−1/2

q̃(x, tn)dx− 1

∆x

∫ tn+1

tn

f(q̃(xj+1/2, t)− f(q̃(xj−1/2, t)dt+
1

∆x

∫ xj+1/2

xj−1/2

∫ tn+1

tn

S

=: Qn − ∆t

∆x
(Fn

j+1/2 − Fn
j−1/2) + ∆tSn

j

with Fn
j+1/2 the mean of q̃(xj+1/2, .) along ]tn, tn+1[ and Sn

j the mean of S on ]xj−1/2, xj+1/2[×]tn, tn+1[.
Here Sn

j depend only on the computation of the integral, since we know S. Fj+1/2 is determined
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by q̃ which is determined by the initial conditions Qn
j only, and it is locally a Riemman prob-

lem around xj+1/2, so it only depends on Qn
j and Qn

j+1. By the mean theorem we can write
Fj+1/2 = f(u∗(Qn

j , Q
n
j+1)), and if ∆t is small enough, q(xj+1/2, t) is the result of locals Riemann

problems that does not interact, so we can solve them separately by Riemann solvers or approxima-
tions.

In this Project, we evaluate all the integral by midpoint formulas and resolve the Riemann problem
by the Roe method whose matrix was developed in b).

We now implement the Roe method with the Roe matrix as described. For the Roe matrix, we
explicitly compute the value of |A| = V |S|V −1 by simple algebra (spectral decomposition and some
substitutions that are detailed in the code in purpose to have a simple formula). The code is the
following.

1 function meth = G_Roe(prob, meth)
2 % Roe scheme
3 % return the structure meth with Q and t updated
4 CFL= 0.5;
5 g=1;
6 Qext = prob.bound(meth.Q);
7 uu= meth.Q(2,:) ./ meth.Q(1,:);
8 gradnorm = max( abs(uu) + sqrt(g*meth.Q(1,:)));
9 k = CFL*meth.dx / gradnorm;

10 if meth.t+k <= prob.T % it is not exceeding T or we reached it already
11 lambda = CFL / gradnorm; %=k/dx;
12 else % it is not exceeding T
13 k= prob.T - meth.t;
14 lambda= k / meth.dx;
15 end
16 flux = zeros(size(meth.Q));
17 for j=1:meth.N+2
18 flux(:,j)=F(Qext(:,j),Qext(:,j+1));
19 end
20 SS= prob.S(meth.x,meth.t+k/2);
21 meth.Q = meth.Q - lambda*(flux(:,2:end) - flux(:,1:end-1)) + k*SS;
22 meth.t = meth.t+k;
23 end
24

25 function absA = abs_roe_matrix(Ql,Qr)
26 % compute the spectral absolute value of the Roe matrix
27 g=1;
28 Q = [Ql,Qr];
29 Z = Q./sqrt(Q(1,:));
30 t = sqrt(g*mean(Z(1,:).^2));
31 r = mean(Z(2,:)) / mean(Z(1,:));
32 s=t+r;
33 d=t-r;
34 absA = [s*abs(d)+d*abs(s) , abs(s)-abs(d);
35 s*d*(abs(s)-abs(d)), s*abs(s)+d*abs(d)] / (2*t);
36 end
37

38 function flux = F(u,v)
39 % The Roe flux
40 g=1;
41 absA= abs_roe_matrix(u,v);
42 flux = 0.5*(f(u(1),u(2)) + f(v(1),v(2))) - 0.5*absA*(v-u);
43 end
44

45 % function A=abs_roe_matrix_old(Ql,Qr)
46 % g=1;
47 % Q = [Ql,Qr];
48 % Z = Q./sqrt(Q(1,:));
49 % ratio = mean(Z(2,:)) / mean(Z(1,:));
50 % A = [0 , 1 ; g*mean(Z(1,:).^2) - ratio^2 , 2*ratio ];
51 % [V,D] = eig(A);
52 % A = V*abs(D)/V;
53 % end

where we used the fact that for the roe method the resulting flux is

F (u, v) = (f(u) + f(v))/2− |A|(v − u)/2
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(d)
Now that we have all the tools needed we make a script that display the wanted plots. The code is
the same as before but replacing the function G_LF by G_Roe each time. We obtain the same plots
than before for the solutions, we don’t show them then again (the code can display them if needed).
The only difference we can see is for the error, for the problem 1.b), we see the error is a before, of
order one:

10
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10
-2

10
-1

Figure 9: Plot of the error with the Roe method for various ∆x.

For the problem 2.b) however, we see that the plot isn’t a perfect line. This is because the error is
compared to a numerical solution, and the scheme converge artificially faster than if it was compared
to the real solution. The mean slope stay one so this confirm the theory that say it is of order one,
because we’ve done order one approximation to the integrals by taking a midpoint formula and not a
higher scheme like the use of polynomial interpolation of order more than zero. here are these plots:
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Figure 10: Plot of the error with the Roe method for various ∆x with conditions (5).
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Figure 11: Plot of the error with the Roe method for various ∆x with conditions (6).

(e)
We have already spoken about the convergence of the error since both method converge, and to the
same solution, it become more convincing that it approximate the solution. We have seen that they
both converge with the same rate.
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Problem 4

(a)
We continue the make_prob function for the new problems:

1 case "4a"
2 h0 = @(x) ones(size(x));
3 m0 = @(x) -1.5*(x<1);
4 prob.q0 = @(x) [h0(x); m0(x)];
5 prob.S= @(x,t) zeros(size(x));
6 prob.T=0.5;
7 prob.bound=open_bound;
8 end
9 end

and compute with shallow_water a reference solution.

1 %% Problem 4.a)
2 clear
3 prob4a = make_prob("4a");
4 meth.N=10000;
5 meth.G= @(prob,meth) G_LF(prob,meth);
6 show.yes=1;
7 show.freq=100;
8

9 methref=shallow_water(prob4a, meth, show);
10 Qref=methref.Q;

Time = 0.5
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Figure 12: Numerical solution for problem 4.a) with the L.-F. scheme and ∆x = 2/10000

(b)
We code a similar script like in 1.b) and 2b) that show the plots:
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Figure 13: Numerical solutions for conditions (7) with the L.-F. scheme and various ∆x
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Problem 4 b): h-solutions with the Lax-Friedrichs scheme at time T = 0.5 with varying mesh size
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Problem 4 b): m-solutions with the Lax-Friedrichs scheme at time T = 0.5 with varying mesh size

Figure 14: Error of the LF scheme with respect to ∆x

(c)
Same experiment, different scheme. We just replace the line 5 and 4 of the two last codes by
meth.G= @(prob,meth), instead of G_Roe(prob,meth). We don’t show again here the code since it
has nothing new. Here are the results:
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Time = 0.5
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Figure 15: Numerical solution for problem 4.a) with the Roe scheme and ∆x = 2/1000
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Figure 16: Numerical solutions for conditions (7) with the Roe scheme and various ∆x
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Problem 4 b): h-solutions with the Roe scheme at time T = 0.5 with varying mesh size
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Problem 4 b): m-solutions with the Roe scheme at time T = 0.5 with varying mesh size

Figure 17: Error of the Roe scheme with respect to ∆x

We immediately see that the solution the Roe scheme gives us is really not the same as for the
LF scheme. It has indeed a discontinuity in the middle that has been form since the first times of
the evolution. At first there were a short and deep sink which in the case of LF, transformed into
a diffusion wave. In the case of Roe a stair at the middle appear and stay discontinuous along the
evolution without diffusing. Obviously this comes from the fact that the LF scheme doesn’t resolve
the Riemann problem, with the cost of a strong dissipating effect.

Annex
the whole code of code/make_prob.m:

1 function prob = make_prob(question)
2 % build the structure prob that describe a problem
3 % prob contain the initial condition q_0,
4 % (sometimes) the true solution q_true, the source S, the limit time T,
5 % and the type of boundary condition bound.
6 periodic_bound = @(Q) [Q(:,end), Q, Q(:,1)];
7 open_bound = @(Q) [Q(:,1), Q, Q(:,end)];
8 switch question
9 case "1a"

10 u=0.25;
11 g=1;
12 h0 = @(x) 1 + 0.5*sin(pi*x);
13 m0 = @(x) u*h0(x);
14 h_true = @(x,t) h0(x-t);
15 m_true = @(x,t) u*h_true(x,t);
16

17 prob.q0 = @(x) [h0(x); m0(x)];
18 prob.q_true = @(x,t) [h_true(x,t); m_true(x,t)];
19 prob.S= @(x,t) pi/2*cos(pi*(x-t)) .* ...
20 [(u-1)*ones(1,length(x)) ; u^2-u+g*h0(x-t)];
21 prob.T=2;
22 prob.bound=periodic_bound;
23 case "2a5"
24 h0 = @(x) 1 - 0.1*sin(pi*x);
25 m0 = @(x) zeros(size(x));
26 prob.q0 = @(x) [h0(x); m0(x)];
27 prob.S= @(x,t) zeros(size(x));
28 prob.T=2;
29 prob.bound=periodic_bound;
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30 case "2a6"
31 h0 = @(x) 1 - 0.2*sin(2*pi*x);
32 m0 = @(x) 0.5*ones(size(x));
33 prob.q0 = @(x) [h0(x); m0(x)];
34 prob.S= @(x,t) zeros(size(x));
35 prob.T=2;
36 prob.bound=periodic_bound;
37 case "4a"
38 h0 = @(x) ones(size(x));
39 m0 = @(x) -1.5*(x<1);
40 prob.q0 = @(x) [h0(x); m0(x)];
41 prob.S= @(x,t) zeros(size(x));
42 prob.T=0.5;
43 prob.bound=open_bound;
44 end
45 end

All the code is in the annexed file.
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