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1.

Let’s write S = {(x, y) ∈ Rn×Rn : h(x, y) = 0} the feasible set of problem (P) and define for i = 1, 2, 3,
hi(x, y) : Rn × Rn → R by

h1(x, y) = 1− x>x,
h2(x, y) = 1− y>y,
h3(x, y) = x>y

for all (x, y) ∈ Rn × Rn. Notice that h : Rn × Rn → R3 is defined by

h(x, y) = [h1(x, y), h2(x, y), h3(x, y)]>.

We have that S is not convex. Here is a counter example: take x ∈ Rn such that xi = δi1 for all
i = 1, ..., n and y ∈ Rn such that yi = δi2. We easily check that (x, y) ∈ S. Now take x′ = −x and
y′ = −y in S. If S was convex, then 1

2 (x, y) + 1
2 (x′, y′) = (~0,~0) should be in S too. But it does not as

h1(~0,~0) = h2(~0,~0) = 1 6= 0.
Moreover, LICQ holds at all feasible points. We have for all (x, y) ∈ Rn × Rn:

∇h1(x, y) = [−2x, 0]>,
∇h2(x, y) = [0,−2y]>,
∇h3(x, y) = [y, x]>.

The vectors ∇h1(x, y),∇h2(x, y),∇h3(x, y) are linearly independent: for all α1, α2 and α3 in R

α1∇h1(x, y) + α2∇h2(x, y) + α3∇h3(x, y) = 0 ∀(x, y) ∈ S (1)

⇐⇒

− 2α1x+ α3y = 0 (2)
− 2α2y + α3x = 0. (3)

By multiplying the equation (2) by x>:

− 2α1x
>x+ α3x

>y = 0 ∀(x, y) ∈ S ⇐⇒ −2α1 = 0 ⇐⇒ α1 = 0, (4)

as x>x = 1 and x>y = 0 for all (x, y) ∈ S.
By taking the transpose of equation (3) and multiplying it by y:

− 2α2y
>y + α3x

>y = 0 ∀(x, y) ∈ S ⇐⇒ −2α2 = 0 ⇐⇒ α2 = 0 (5)
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as y>y = 0 for all (x, y) ∈ S.
By taking equation (2) and α1 = 0:

α3y = 0. (6)

By multiplying by y>, we have that α3 = 0.
Therefore ∇h1(x, y),∇h2(x, y),∇h3(x, y) are linearly independent, so LICQ holds for (x, y) ∈ S.

2.

For the relaxed problem, we can compare it to the Rayleigh quotient example (Example 8.33 in the
lecture notes). Here we are considering a similar problem, the difference is that the cost function sums
two functions depending on (a priori) different matrices A and B, and the set S ensures that x and y
are, each one of them, of norm one.

Consider λA1 ≥ ... ≥ λAn and λB1 ≥ ... ≥ λBn in R the ordered eigenvalues of the matrices A and B
respectively. Set eA1 , ..., eAn and eB1 , ..., e

B
n in Rn the respective orthonormal eigenvectors.

The optimal value of the relaxed problem is given by (x, y) = (eAn , eBn ) ∈ Rn × Rn such that

f(eAn , eBn ) = 1/2λAn + 1/2λBn

If eAn
>
eBn = 0 (i.e. they satisfy h3(eAn , eBn ) = 0), then the relaxed and target problems share the same

solution. Otherwise, the target problem will have a greater value for min(x,y)∈S f(x, y) since another
condition is added.

3.

Let µ = (µ1, µ2, µ3)> ∈ R3. Then, for all (x, y) ∈ Rn × Rn, the Lagrangian function is given by:

L(x, y, µ) = f(x, y) + µ>h(x, y) = 1
2x
>Ax+ 1

2y
>By + µ1(1− x>x) + µ2(1− y>y) + µ3x

>y

= 1
2x
>Ax+ 1

2y
>By + µ1 − µ1x

>Inx+ µ2 − µ2y
>Iny + µ3x

>y

= x>(1
2A− µ1In)x+ y>(1

2B − µ2In)y + µ3x
>y + µ1 + µ2

= 1
2x
>(A− 2µ1In)x+ 1

2y
>(B − 2µ2In)y + (1

2µ3x
>y + 1

2µ3y
>x) + µ1 + µ2

(7)

with In ∈ Rn×n the identity matrix. The equalities are by linearity and symmetry of the scalar
product. Finally the Lagrangian function can be written under matrix form:

L(x, y, µ) = 1
2
[
x>(A− 2µ1In) + µ3y

>In y>(B − 2µ2In) + µ3x
>In

] [x
y

]
+ µ1 + µ2

= 1
2
[
x> y>

] [A− 2µ1In µ3In
µ3In B − 2µ2In

] [
x
y

]
+ µ1 + µ2

(8)

Define the matrix M(µ) ∈ R2n×2n:

M(µ) =
[
A− 2µ1In µ3In
µ3In B − 2µ2In

]
. (9)
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4.

Define γ1 ≥ ... ≥ γ2n ⊂ R and a1, ..., a2n ⊂ R2n the eigenvalues, respectively the corresponding orthonor-
mal eigenvector basis of the matrix M(µ). We have two cases:

• if γ2n ≥ 0: as µ is fixed, the quantity LD(µ) attains its infimum at (x, y) = (~0,~0). Indeed, suppose
by contradiction that there exists (x′, y′) ∈ Rn × Rn such that

L(x′, y′, µ) < L(~0,~0, µ). (10)

We can write (x′, y′) as a linear combination of a1, ..., a2n:

(x′, y′) =
2n∑
i=1

βiai

with βi ∈ R for i = 1, ..., 2n.
Then :

L(x′, y′, µ) = 1
2(

2n∑
i=1

βiai)>M(µ)(
2n∑
j=1

βjaj) + µ1 + µ2 = 1
2

2n∑
i=1

β2
i a
>
i M(µ)ai + µ1 + µ2

= 1
2

2n∑
i=1

β2
i γi + µ1 + µ2 ≥ µ1 + µ2 = L(~0,~0, µ)

(11)

as {ai}2n
i=1 is an orthonormal basis and γi ≥ 0 for all i = 1, ..., 2n. We have a contradiction here

with Equation (10). Therefore the infimum is finite:

LD(µ) = µ1 + µ2

By the hint, M(µ) being positive semi-definite (PSD) implies that its diagonal blocks are PSD as
well. In other words A− 2µ1In and B − 2µ2In are PSD. In particular, their smallest eigenvalue is
bigger or equal to zero. With the former notation:

λAn − 2µ1 ≥ 0 ⇐⇒ µ1 ≤
1
2λ

A
n

λBn − 2µ2 ≥ 0 ⇐⇒ µ2 ≤
1
2λ

B
n .

(12)

Therefore the function LD(µ) is bounded by:

LD(µ) ≤ 1
2(λAn + λBn ). (13)

• if γ2n < 0: the infimum is not finite, as we could take (x, y) = ta2n, t ∈ R. Then we would obtain:

lim
t→∞

L(x, y, µ) = lim
t→∞

1
2 t

2γ2n + µ1 + µ2 = −∞. (14)

In short, we have:

LD(x, y, µ) =
{
µ1 + µ2 if γ2n ≥ 0
−∞ otherwise. (15)
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5.

By equation (13), the dual problem
max
µ∈R3

LD(µ) (16)

attains its optimal value at 1
2 (λAn + λBn ), if and only if M(µ) is positive semi-definite.

We have a necessary condition in equation (12). If this condition is satisfied, then the optimal value
is attained by µ1 = 1

2λ
A
n and µ2 = 1

2λ
B
n .

Let’s find µ so that M(µ) is PSD and that the optimal value is attained. In order for the dual function
LD(µ) = µ1 + µ2 to attain the optimal value 1

2 (λAn + λBn ), we necessarily have µ1 = 1
2λ

A
n and µ2 = 1

2λ
B
n .

We notice that with µ3 = 0, M(µ) is PSD :

For all x, y ∈ Rn:

[
x> y>

] [A− 2µ1In µ3In
µ3In B − 2µ2In

] [
x
y

]
=
[
x> y>

] [A− 2 1
2λ

A
n In 0n

0n B − 2 1
2λ

B
n In

] [
x
y

]
= x>(A− λAn In)x︸ ︷︷ ︸

≥0

+ y>(B − λBn In)y︸ ︷︷ ︸
≥0

≥ 0. (17)

by definition of the eigenvalues of A and B.
Thus with µ = (µ1, µ2, µ3) = ( 1

2λ
A
n ,

1
2λ

B
n , 0), the matrix M(µ) is PSD. We have found a sufficient

condition, so that the optimal value is attained in the feasible set. To conclude, the optimal value is
1
2 (λAn + λBn ).

By weak duality, for all µ ∈ R3 and (x, y) ∈ Rn × Rn:

LD(µ) ≤ LP (x, y).

One of the consequences is that

max
µ∈R3

Ld(µ) ≤ min
(x,y)∈Rn×Rn

LP (x, y) = min
(x,y)∈S

f(x, y). (18)

Thus
1
2(λAn + λBn ) = max

µ∈R3
Ld(µ) ≤ min

(x,y)∈S
f(x, y). (19)

In light of the second question, we have that the relax problem attains the same optimal value of
1
2 (λAn + λBn ). We have found that the target problem has the same optimal value.

6.

The hypothesis of the strong duality problem are:

a) The primal problem has a global minimizer (x∗, y∗) ∈ S;

b) There exists a valid Lagrange multiplier µ∗ for (x∗, y∗);

c) The function (x, y) 7→ L(x, y, µ∗) is convex.

Let’s verify each one of them.
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a) As the cost function f(x, y) is continuous and the search space is compact, then f admits a global
minimum (x∗, y∗). Indeed S is compact as it is bounded: for all (x, y) ∈ S, ‖(x, y)‖ ≤ 5 as ‖x‖2,
‖y‖2 = 1. More precisely:

‖(x, y)‖2 =
n∑
i=1

x2
i +

n∑
j=1

y2
j = ‖x‖2 + ‖y‖2 = 2 ≤ 25. (20)

Also S is closed as h1, h2 and h3 are continuous.

b) Suppose (x∗, y∗) ∈ S is a global minimizer of f(x, y) on S. It is a stationary point. Since LICQ
holds in S by question 1, it holds at (x∗, y∗). Thus there exists a KKT Lagrange multiplier µ∗ ∈ R3

for (x∗, y∗).

c) The function L(x, y, µ∗) is convex if and only if its hessian is positive semi-definite. First, let’s make
the change the variables:

z> = [x>y>] for (x, y) ∈ Rn × Rn (21)

with z ∈ R2n.
The Lagrangian function becomes:

L(z, µ) = 1
2z
>
[
A− 2µ1In µ3In
µ3In B − 2µ2In

]
z + µ1 + µ2. (22)

We recognize a quadratic function with respect to z. From previous homeworks, we know that the
hessian is given by

∇2
zL(z, µ∗) =

[
A− 2µ∗1In µ∗3In
µ∗3In B − 2µ∗2In

]
. (23)

The hessian ∇2
zL(z, µ∗) being PSD implies that its block matrices are (and not the reverse). That

means that A − 2µ∗1In and B − 2µ∗2In are PSD. With the same reasoning as in question 4 (see
equation 12), we have that

µ∗1 ≤
1
2λ

A
n µ∗2 ≤

1
2λ

B
n . (24)

So if we have µ∗1 > 1
2λ

A
n or µ∗2 > 1

2λ
B
n , the hessian is not PSD, and therefore L(z, µ∗) is not convex

(necessary condition).
But if the condition in equation (24) is verified, it does not imply that the hessian is PSD. We would
need more information. We would directly need to prove that the hessian ∇2

zL(z, µ∗) is PSD, in
order to show convexity.

7.

First we compute the jacobian of the augmented Lagrangian Lβ(z, µ) with respect to x, by using linearity
and the matrix product derivation formula; we use the notation z = (x, y):

Dx(Lβ(z, µ)) = Dxf(z) + µ>Dxh(z) + β

2Dx(h(z)>h(z))

= (∇xf(z))> + µ>Dxh(z) + βh(z)>Dxh(z)
= (Ax)> + (µ+ βh(z))>Dxh(z),
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where we use (0) a vector of the same dimensions of x and y with null coordinates. We compute then
the jacobian of h:

Dxh(z) = Dx(1− x>x, 1− y>y, x>y)> = (−2x, (0), y)>.

We can now put it in the formula for Dx(Lβ(z, µ)) and take the transpose to have the gradient :

∇x(Lβ(z, µ)) = Ax+ (−2x, (0), y)(µ+ βh(z)).

By the same arguments and the symmetry of the situation, we find similar computations for

∇yLβ(z, µ) = By + ((0),−2y, x)(µ+ βh(z)).

8.

The following code is a function which takes as input x, y, µ, β and returns Lβ(x, y, µ), ∇xLβ(x, y, µ) and
∇yLβ(x, y, µ). In addition to that, we add two output for the value of f(z) and h(z), it will be useful
later.

1 function [L, Gx, Gy, f, h] = lagrangian(x,y,mu,beta)
2 % Question 8.
3 % Compute quantites related to
4 % L beta(z,mu) = f(z) + <\mu,h(z)> + beta/2 | |h(z)||ˆ2,
5 % the Augmented Lagrangian of the problem min S f,
6 % where f(x,y) = 0.5<x,Ax> + 0.5<y,By>,
7 % and S={z:h(z)=0}
8 %
9 % INPUTS :

10 % (x,y) = z, the point of the space
11 % mu = the lagrangian parameter
12 % beta = the cost paramter
13 % OUTPUTS :
14 % L = the evaluation
15 % Gx and Gy = the gradients with respect to x and y
16 % f = the evaluation of the initial function to minimize
17 % h = the evaluation of the equality constraint function
18 %
19 % If mu is the vector null, it can be put as a scalar.
20

21 A=[ 2 4 4 5 9
22 4 4 8 7 5
23 4 8 2 8 5
24 5 7 8 6 5
25 9 5 5 5 2];
26 B=[ 4 8 3 6 8
27 8 4 4 5 2
28 3 4 2 8 5
29 6 5 8 4 7
30 8 2 5 7 8];
31 f= (x'*A*x + y'*B*y)/2;
32 h= [ 1-x'*x ; 1-y'*y ; x'*y ];
33 L= f + (mu + (beta/2)*h)'*h;
34 Dx= [ -2*x , zeros(5,1) , y ];
35 Dy= [ zeros(5,1) , -2*y , x ];
36 res= mu + beta*h;
37 Gx= A*x + Dx*res;
38 Gy= B*y + Dy*res;
39 end
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9.

We want to minimize with respect to x and z, so to use optimization functions, we write a short function
zlagrangian that do the same as lagrangian but take x and y in one concatenated vector z, and return
the two gradients in one concatenated vector Gz:

1 function [L, Gz] = zlagrangian(z,mu,beta)
2 % Question 8.
3 % compute the same as lagrangian.m but all with
4 % x and y concatenated in z.
5 [L, Gx, Gy,~,~] = lagrangian(z(1:5), z(6:end), mu, beta);
6 Gz= [Gx; Gy];
7 end

Now we are able to implement the code that minimize the augmented Lagrangian function for one β, it
use Matlab’s optimization function fminunc:

1 function [x, y, L]=minimiser(x0, y0, mu,beta)
2 % minimize the cost function F beta implemented in
3 % lagrangian.m with fminunc and use of gradient.
4

5 L = @(z) zlagrangian(z,mu,beta);
6 options = optimoptions('fminunc','SpecifyObjectiveGradient',true,'Display', 'none');
7 [z, L] = fminunc(L,[x0;y0],options);
8 x= z(1:5);
9 y= z(6:end);

10 end

We can finally use this function for some particular values:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Question 9
3 % Minimize the augmented Lagrangian function
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 close all
6 clear
7 % Data:
8 beta = 1.42;
9

10 % Initialisation:
11 mu = [1;2;-3];
12 x0 = [1;0;-1;2;1];
13 y0 = [1;2;0;1;2];
14

15 % Computation:
16 [x, y, L] = minimiser(x0, y0, mu,beta);
17

18 % Display:
19 disp('Optimisation ended at the position')
20 x=x
21 y=y
22 disp('with value of objective function')
23 L beta=L

7
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The values we get are in the command are:

1 Optimisation ended at the position
2 x =
3 -1.3695
4 -0.2535
5 -0.0107
6 0.0825
7 1.4721
8 y =
9 -1.2693

10 0.9636
11 -1.0786
12 0.7410
13 0.5569
14 with value of objective function
15 L beta =
16 -26.4171

10.

We implement the quadratic penalty method for this problem:

1 function [x,y,X,Y,F,H]=QuadraticPenalty(x,y,Beta)
2 % The Quadratic Penalty method for the problem min S f.
3 % INPUTS :
4 % (x,y) = z, the point of the space
5 % Beta = A vector with the values of beta at each step,
6 % determins the number of iterations
7 % OUTPUTS :
8 % L = the evaluation
9 % Gx and Gy = the gradients with respect to x and y

10 % f = the evaluation of the initial function to minimize
11 % h = the evaluation of the equality constraint function
12 iter=length(Beta);
13 X=zeros(length(x),iter);
14 Y=X;
15 F=zeros(1,iter);
16 H=zeros(3,iter);
17

18 for j=1:iter
19 [x,y,~] = minimiser(x, y,0,Beta(j));
20 X(:,j)=x;
21 Y(:,j)=y;
22 [~, ~, ~, F(j), H(:,j)] = lagrangian(x,y,0,Beta(j));
23 end
24 end

We use it for some random initialisation:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Question 10
3 % Use of QuadraticPenalty
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 close all
6 clear
7 % Initialisation:

8
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8 Beta = 2.ˆ(0:8);
9 x0 = 10*randn(5,1);

10 y0 = 10*randn(5,1);
11

12 % Computation:
13 [x,y,X,Y,F,H]=QuadraticPenalty(x0,y0,Beta);
14

15 % Result values:
16 BH= Beta.*H;
17 normBH= sum(BH.ˆ2,1);
18 steps= BH(:,1:end-1) - BH(:,2:end);
19 diff= sqrt(sum(steps.ˆ2 , 1));
20 normH= sqrt(sum(H.ˆ2,1));
21

22 %% Display evolution of beta h(x,y)
23 figure
24 semilogy(diff,'.-')
25 hold on
26 semilogy(normBH,'.-')
27 title('Question 10. Quadratic penalty method, evolution of $\beta h(x,y)$.',...
28 'interpreter','latex')
29 legend('$\|\beta {k+1} h(z {k+1})-\beta k h(z k)\|$',...
30 '$\|\beta k h(z k)\|$','interpreter','latex')
31 xlabel('step ($k$)','interpreter','latex')
32 hold off
33

34 %% Display Evolution of | | h(x,y) | |
35 figure
36 semilogy(normH,'.-')
37 hold on
38 semilogy(exp(-(1:9)),'.-')
39 title('Question 10. Quadratic penalty method, evolution of $\ |h(x,y)\|$.',...
40 'interpreter','latex')
41 xlabel('step ($k$)','interpreter','latex')
42 legend('$\ |h(z k)\|$','$eˆ{-k}$','interpreter','latex')
43

44 %% Display evolution of h(x,y) and beta h(x,y)
45 figure
46 plot(H','.-','color','#0072BD')
47 hold on
48 plot(BH','.-','color','r')
49 title('Question 10. Quadratic penalty method, evolution of $h(x,y)$ and $$\beta h(x,y)$$.',...
50 'interpreter','latex')
51 legend('$h 1(x,y)$','$h 2(x,y)$','$h 2(x,y)$','$\beta h 1(x,y)$',...
52 '$\beta h 2(x,y)$','$\beta h 3(x,y)$','interpreter','latex')
53 xlabel('step ($k$)','interpreter','latex')
54 hold off

The data we get is the following. The values of x are stored in the columns of the variable X:

1 X =
2 -1.3391 -1.0365 -0.8481 -0.7350 -0.6708 -0.6360 -0.6177 -0.6083 -0.6036
3 -0.4804 -0.4026 -0.3517 -0.3248 -0.3114 -0.3050 -0.3019 -0.3003 -0.2996
4 0.4334 0.3792 0.3503 0.3393 0.3364 0.3362 0.3365 0.3368 0.3370
5 -0.1131 -0.1000 -0.0978 -0.0989 -0.1007 -0.1022 -0.1031 -0.1036 -0.1038
6 1.4538 1.1276 0.9235 0.8012 0.7318 0.6941 0.6743 0.6642 0.6591
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The values of y are stored in the columns of the variable Y:

1 Y =
2 -0.9626 -0.7603 -0.6284 -0.5507 -0.5075 -0.4845 -0.4727 -0.4666 -0.4636
3 0.7537 0.5928 0.4911 0.4314 0.3984 0.3809 0.3718 0.3673 0.3649
4 -1.2185 -0.9649 -0.8132 -0.7252 -0.6767 -0.6508 -0.6374 -0.6306 -0.6272
5 0.9559 0.7630 0.6450 0.5764 0.5383 0.5180 0.5074 0.5020 0.4992

The values of f(x, y) are stored in the columns of the variable F:

1 F =
2 -27.0394 -16.6912 -11.5137 -8.9232 -7.6269 -6.9781 -6.6536 -6.4912 -6.4100

The values of h(x, y) are stored in the columns of the variable H:

1 H =
2 Columns 1 through 5
3 -3.3381e+00 -1.6619e+00 -8.2810e-01 -4.1261e-01 -2.0572e-01
4 -2.9969e+00 -1.5051e+00 -7.5479e-01 -3.7863e-01 -1.8985e-01
5 7.5882e-01 3.8896e-01 2.0016e-01 1.0270e-01 5.2319e-02
6 Columns 6 through 9
7 -1.0267e-01 -5.1275e-02 -2.5621e-02 -1.2807e-02
8 -9.5114e-02 -4.7614e-02 -2.3823e-02 -1.1916e-02
9 2.6462e-02 1.3317e-02 6.6809e-03 3.3463e-03

The values of βh(x, y) are stored in the columns of the variable BH:

1 BH =
2 -3.3381 -3.3239 -3.3124 -3.3009 -3.2916 -3.2853 -3.2816 -3.2795 -3.2785
3 -2.9969 -3.0102 -3.0192 -3.0291 -3.0376 -3.0436 -3.0473 -3.0493 -3.0504
4 0.7588 0.7779 0.8006 0.8216 0.8371 0.8468 0.8523 0.8552 0.8566

We comment briefly the behavior of ‖h(x, y)‖ and βh(x, y): The code ”question10” we wrote, display two
plots:
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As we can see, the norm of h decrease very fast, exponentially in k. This show that the current
position go near the feasible set. However, if we take the β into account to watch βh(x, y) which is the
step between two consecutive µ, we see that its value is very stable in the space. It’s norm seem constant,
and more than that, the length of the steps it mades, are small: absolutely, and relatively to its norm.
This mean that it really doesn’t change.

The assumptions of theorem 10.10 are true: βk →∞, zk are assumed critical points thanks to fminunc.
They seem to converge to a point z∗, that is mostly feasible thanks to the fact that h is almost zero,
LICQ holds thanks to question 1, and so MFCQ holds too. We see that the conclusion is confirmed,
βkh(zk) is bounded and the point to which it tends to a, is a valid pair of Lagrange multipliers in z∗,
which is stationary.

Notice that f actually increase during the process, but it’s because the method move outside the
feasible set (most of the time because it is a meagre set), and tends to it.

The following graphic resume the values of h and βh:
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Figure 3

11.

We implement the augmented Lagrangian method for this problem:

1 function [x,y,X,Y,F,H,Mu] = AugmentedLagrangian(x,y,mu,Beta)
2 % The Augmented Lagrangian method for the problem min S f.
3 % INPUTS :
4 % (x,y) = z, the point of the space

12
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5 % mu = the initial lagrangian parameter
6 % Beta = A vector with the values of beta at each step,
7 % determins the number of iterations
8 % OUTPUTS :
9 % (x,y) = the final minimizer

10 % X and Y = The succesive x and y, stored in collumns
11 % F = the succesive evaluations of f stored in collumns
12 % H = the succesive evaluations of h stored in collumns
13 % Mu = the succesive values of mu stored in collumns
14

15 iter=length(Beta);
16 X=zeros(length(x),iter);
17 Y=X;
18 F=zeros(1,iter);
19 H=zeros(3,iter);
20 Mu=H;
21

22 for j=1:iter
23 [x,y,~] = minimiser(x, y,mu,Beta(j));
24 X(:,j)=x;
25 Y(:,j)=y;
26 [~, ~, ~, F(j), H(:,j)] = lagrangian(x,y,0,Beta(j));
27 Mu(:,j)=mu;
28 mu = mu + Beta(j)*H(:,j);
29 end
30 end

We use it for some random initialisation:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Question 11
3 % Use of AugmentedLagrangian
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 close all
6 clear
7 % Initialisation:
8 mu=0;
9 Beta = 2.ˆ(0:8);

10 x0 = 10*randn(5,1);
11 y0 = 10*randn(5,1);
12 iter=9;
13

14 % Computation:
15 [x,y,X,Y,F,H,Mu]=AugmentedLagrangian(x0,y0,mu,Beta);
16

17 % Result values:
18 BH= Beta.*H;
19 normBH= sum(BH.ˆ2,1);
20 steps= BH(:,1:end-1) - BH(:,2:end);
21 diff= sqrt(sum(steps.ˆ2 , 1));
22 normH= sqrt(sum(H.ˆ2,1));
23

24 %% Display Evolution of beta h(x,y)
25 figure
26 semilogy(diff,'.-')
27 hold on
28 semilogy(normBH,'.-')
29 title('Question 11: Augmented Lagrangian method, evolution of $\beta h(x,y)$.','interpreter','latex')
30 legend('$\|\beta {k+1} h(z {k+1})-\beta k h(z k)\|$','$\|\beta k h(z k)\|$','interpreter','latex')
31 xlabel('step ($k$)','interpreter','latex')
32 hold off
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33

34 %% Display Evolution of | | h(x,y) | |:
35 figure
36 semilogy(normH,'.-')
37 hold on
38 semilogy(exp(-(1:9)),'.-')
39 title('Question 11: Augmented Lagrangian method, evolution of $\ |h(x,y)\|$.','interpreter','latex')
40 xlabel('step ($k$)','interpreter','latex')
41 legend('$\ |h(z k)\|$','$eˆ{-k}$','interpreter','latex')
42

43 %% Display Evolution of mu:
44 figure
45 plot(Mu','.-')
46 title('Question 11: Augmented Lagrangian method, evolution of $\mu$.','interpreter','latex')
47 xlabel('step ($k$)','interpreter','latex')
48 legend('$\mu 1$','$\mu 2$','$\mu 3$','interpreter','latex')

The data we get is the following. The values of x are stored in the columns of the variable X:

1 X =
2 -1.3358 -0.5924 -0.6019 -0.5987 -0.5988 -0.5988 -0.5988 -0.5988 -0.5988
3 -0.4893 -0.2933 -0.2961 -0.2988 -0.2988 -0.2988 -0.2988 -0.2988 -0.2988
4 0.4352 0.3231 0.3316 0.3371 0.3372 0.3372 0.3372 0.3372 0.3372
5 -0.1078 -0.0961 -0.1019 -0.1041 -0.1041 -0.1041 -0.1041 -0.1041 -0.1041
6 1.4521 0.6471 0.6571 0.6538 0.6539 0.6539 0.6539 0.6539 0.6539

The values of y are stored in the columns of the variable Y:

1 Y =
2 0.9671 0.4863 0.4603 0.4609 0.4605 0.4605 0.4605 0.4605 0.4605
3 -0.7491 -0.3815 -0.3622 -0.3629 -0.3626 -0.3626 -0.3626 -0.3626 -0.3626
4 1.2137 0.6202 0.6228 0.6237 0.6237 0.6237 0.6237 0.6237 0.6237
5 -0.9633 -0.4858 -0.4960 -0.4963 -0.4965 -0.4965 -0.4965 -0.4965 -0.4965
6 -0.3185 -0.1626 -0.1445 -0.1450 -0.1447 -0.1447 -0.1447 -0.1447 -0.1447

The values of f(x, y) are stored in the columns of the variable F:

1 F =
2 -27.0282 -6.3463 -6.3356 -6.3290 -6.3289 -6.3288 -6.3288 -6.3288 -6.3288

The values of h(x, y) are stored in the columns of the variable H:

1 H =
2 Columns 1 through 5
3 -3.3335e+00 3.0649e-02 -2.0728e-03 4.0643e-04 -8.6815e-06
4 -2.9989e+00 -2.9100e-02 2.1782e-03 -4.0581e-04 8.6800e-06
5 -7.5578e-01 -3.4339e-02 -7.6795e-03 -3.2636e-04 -2.4175e-05
6 Columns 6 through 9
7 2.4628e-07 -5.2901e-08 5.6256e-08 -2.3243e-08
8 -2.4609e-07 5.2757e-08 -5.6157e-08 2.3193e-08
9 -1.5097e-07 -5.5143e-08 7.2996e-09 9.6474e-09
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The values of µ are stored in the columns of the variable Mu:

1 Mu =
2 0 -3.3335 -3.2722 -3.2805 -3.2772 -3.2774 -3.2774 -3.2774 -3.2774
3 0 -2.9989 -3.0571 -3.0484 -3.0516 -3.0515 -3.0515 -3.0515 -3.0515
4 0 -0.7558 -0.8245 -0.8552 -0.8578 -0.8582 -0.8582 -0.8582 -0.8582

In the he code ”question11” we wrote, we display again the two same plots as in question 10, to be able
to compare them:
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Figure 4

Here, the norm of h decrease very fast, exponentially in k, even faster and smaller than before. We
attain the seventh negative power of ten, versus the second for the penalty method. This show that the
current position of h goes faster and nearer to the feasible set. If we look at βh(x, y), we see that its value
is not constant. Its norm decreases, as well as the length of the steps it makes. But if they are absolutely
small, they are bigger than the own norm of H, it does change direction of search. The quantity βh(x, y)
is just the step between to consecutive µ, which converges indeed.
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1 2 3 4 5 6 7 8 9
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Figure 5

12.

We use (24) to show that it is not convex: mu(1)-0.5*min(eig(A)) and mu(2)-0.5*min(eig(B)) give
0.2872 and 0.1195, so the hessian is not PSD. As a matter of fact, with question 6 and (23) we can
quantify convexity on the positivity of the hessian matrix

∇2
zL(z, µ) =

[
A− 2µ1In µ3In
µ3In B − 2µ2In

]
.

We check numerically too if the Lagrangian is convex by ploting the images of random lines:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Question 12
3 % Convexity of the Lagrangian
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 A=[ 2 4 4 5 9
6 4 4 8 7 5
7 4 8 2 8 5
8 5 7 8 6 5
9 9 5 5 5 2];

10 B=[ 4 8 3 6 8
11 8 4 4 5 2
12 3 4 2 8 5
13 6 5 8 4 7
14 8 2 5 7 8];
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15 mu = [-3.27737103718143; -3.05147230163484; -0.858177313718625]
16 % By quadratic function formula and eigenvalues:
17 H= [ A-2*mu(1)*eye(5) , mu(3)*eye(5) ;
18 mu(3)*eye(5) , B-2*mu(2)*eye(5) ];
19 disp('The smallest eigenvalue of the hessian of the Lagrangian is')
20 lambda = min(eig(H))
21

22 % By random lines:
23 t=linspace(-5,5,100);
24 for j=1:1000
25 v=rand(10,1);
26 v=v/norm(v);
27 L=zeros(1,100);
28 for k=1:100
29 [L(k), ~] = zlagrangian(t(k)*v,mu,0);
30 end
31 plot(L)
32 hold on
33 end
34 hold off

This gives the following plot:

Figure 6

We see that all these curves are convex and that however, the matrix is not semi positive definite. The
range of eigenvalues goes from -1.1210 to 34.5590. This mean that the function is almost convex, except
from the direction to the eigenvector associated to the eigenvalue -1.1210 (which is the only significant
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negative value).
The question 5 showed us in (19) that

1
2(λAn + λBn ) ≤ min

(x,y)∈S
f(x, y), (25)

where λAn and λBn are the smallest eigenvalues of A and B. We compute their mean with
(min(eig(A))+min(eig(B)))/2 in MATLAB and obtain -6.7355. This is pretty near under -6.4100 and
-6.3288 that we obtained for the two methods of the last questions. This should give a hint that we are
near the best solution and that we cannot go down much more. However, this has to be nuanced because
we don’t know if this difference is significantly big or small for the problem, and we must have lost
precision due to finite precision machine. The hypothesis of the strong duality theorem are not satisfy,
so we cannot conclude on strong duality, although it seems to be satisfied numerically.
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