
MATH-329 Nonlinear optimization Homework 1: gradient descent

and convexity

Benôıt Müller
Instructor: Nicolas Boumal

TAs: Quentin Rebjock and Axel Séguin

October 4, 2023

Remarks on the code

Each file named questionx.m is the main file of the question number x. The other files are data or functions
named after their utility. Running the main script of a question give the output detailed in this document.

We use showMNISTImage.m and showMNISTImages many.m as it has been given in the starting file,
without changing them.

Answers to the questions

1. Using the fact that − log(xayb) = a log(1/x) + b log(1/y), we obtain

f(θ) = − log l(θ) = − log

m∏
j=1

σ(〈xj , x〉) + b)yjσ(−〈xj , x〉)− b)1−yj

= −
m∑
j=1

(
yj log

(
σ(〈x̃j , θ〉)

)
+ (1− yj) log

(
σ(−〈x̃j , θ〉)

))
=

m∑
j=1

(
yj log

(
1 + e−〈x̃j ,θ〉

)
+ (1− yj) log

(
1 + e〈x̃j ,θ〉

))
.

2. We call it τ : z 7→ log(1 + ez) and it is clearly twice differentiable with first derivative

τ ′(z) =
ez

1 + ez
=

1

1 + e−z
= σ(z),

and second derivative

τ ′′(z) =
ez

(1 + ez)2
> 0.

Then by a classic result of calculus, having a positive second derivative, it must be convex.

3. We know that a linear combination (with positive factors) of convex functions is convex again. We
then just have to show that log

(
1 + e±〈x̃j ,θ〉

)
are convex in θ, since {yj , 1− yj} = {0, 1} ⊂ R+ for all

j ≤ m.

Morevover, for two twice differentiable functions f and g, (h◦g)′′ = ((h′◦g)g′)′ = ((h′′◦g)(g′)2+(h′◦g)g′′

is positive if h′, h′′ and g′′ are positive, that mean that h ◦ g is convex if g and h are convex too and h
is non-decreasing.

1

Benôıt Müller Homework 1 October 4, 2023

In our case, the function τ is convex and has a positive derivative so it’s increasing. ±〈x̃j , θ〉 are both
linear in θ and so convex too. We can apply what we’ve just said and conclude that log

(
1 + e±〈x̃j ,θ〉

)
are convex in θ, implying that f is convex.

4. By construction, fλ(θ) − λ
2 ‖θ‖

2 = f(θ), which is convex (Question 3.). By defintion, fλ is then
λ-strongly convex.

5. By the course, λ-strong convexity implies the existance of a unique global minimum and since fλ is
continuously differentiable, it’s a point where the gradient vanishes because it is in particular a local
minimum. We can conclude directly thanks to Question 4.

6. We claim that, with respect to the standard euclidean structure of Rm,

∇fλ(θ) =

m∑
j=1

log(1 + e〈x̃j ,θ〉)−Xy + λθ = X(τ(X>θ))− y) + λθ

whith the matrix X = (x̃1 | · · · | x̃m) ∈ Rd×m, and where we extend τ (and other functions like exp
etc. . .) to matrix entries with τ(A) = (τ(Aij))ij . Let’s proove it:

First, noticing that τ(z) = log(1 + ez) = z + log(e−z + 1) = z + τ(−z), we rewrite f as follow :

f(θ) =

m∑
j=1

(
yj log

(
1 + e−〈x̃j ,θ〉

)
+ (1− yj) log

(
1 + e〈x̃j ,θ〉

))
=

m∑
j=1

(
yj
(
− 〈x̃j , θ〉+ log

(
1 + e〈x̃j ,θ〉

))
+ (1− yj) log

(
1 + e〈x̃j ,θ〉

))
=

m∑
j=1

(
log
(
1 + e〈x̃j ,θ〉

)
− yj〈x̃j , θ〉

)
= 1> log(1 + exp(X>θ))− (Xy)>θ

= 1>τ(X>θ)− (Xy)>θ.

with the vector collon 1 = (1, ..., 1)> ∈ Rd×1.

Now using basic properties of jacobians and gradients, ∇fλ(θ) = Dθ(1>τ(X>θ))−Xy+ λθ. The first
term is computed as follow :

(Dθ(1
>τ(X>θ))) =

m∑
j=1

Dθτ(〈x̃j , θ〉) =

m∑
j=1

x̃jτ
′(〈x̃j , θ〉) = Xσ(X>θ).

Together, this give us Xσ(X>θ))−Xy + λθ = X(σ(X>θ))− y) + λθ

7. First we implement τ which will be needed and which has bad computing precision properties when
the argument become big. The value of τ(z) approach z but before the log take the value back down,
the exp take the value very high and thus, is interpreted as infinity before the final value become too
big to be actually stored. Our strategy is then to factorise and take a z out to have the sum of z and
the small rest : τ(z) = log(1 + ez) = log(ez(e−z + 1)) = log(ez) + log(e−z + 1) = z+ log(e−z + 1). Like
this, the e−z can go as small as he want(even 0), it will make the log vanish and leave the z alone. We
can now separate the cases where z is big or small and use the right formula for each :

1 function [y]=tau(x)
2 % Input any matrix
3 % compute for each index log(1+eˆx) with ~stable computation

2

Benôıt Müller Homework 1 October 4, 2023

4 index = x>0;
5 y = x;
6 y(index) = x(index) + log(exp(-x(index)) + 1);
7 y(~index) = log(exp(x(~index)) + 1);
8 end

Now we can implement the function that compute fλ and its gradient with the formulas of Question 6.
We put the data in the input in order not to load it each time we call the function. Moreover the
function works with multiples points stored in a matrix. In order to gain time when we only want one
of the two outputs we ask for a third input to precise which output to compute.

1 function [f, g] = logistic regression(train,theta,output)
2 % Input:
3 %
4 % train : the data to train on
5 % theta : A tentative parameter vector (column) for logistic regression.
6 % if theta is a matrix [theta(1),...,theta(N)] it will return
7 % each output concatened in a row.
8 % output: 'f','g',fg', if we need f, g, or f and g respectively
9 %

10 % Output:
11 %
12 % f: value of the logistic regression negative log-likelihood cost function
13 % g: gradient of the cost function at theta, as a column vector
14

15

16 % train: The training data set (see Moodle)
17 % This is a structure with fields train.X and train.y
18 % containing, respectively, the examples (the images) and the
19 % labels to be used for training.
20

21 X = train.X;
22 y = train.y;
23

24 lambda = 1e-4 ; % regularization parameter
25 sigma = @(x) (exp(-x) + 1).ˆ(-1);
26 product = X' * theta;
27 if output=='f' | output=='fg'
28 f = sum(tau(product)) - y'*product + lambda/2 * sum(theta.ˆ2);
29 else
30 f=[];
31 end
32

33 if output=='g' | output=='fg'
34 g= X * (sigma(product) - y) + lambda * theta;
35 else
36 g=[];
37 end

8. Here is the code for it and the plot in Figure 1 :

1 %%%
2 % Question 8
3 % Test of logistic regression and its gradient by...
4 % taylor expantion of order 2...
5 % in a random point and direction.
6 %%%
7

3

Benôıt Müller Homework 1 October 4, 2023

8 load('mnist train test.mat');
9 theta = rand(28*28+1, 1); % random start

10 v = rand(size(theta));
11 v = v / norm(v); % random direction
12 t = logspace(-8, 0, 101); % length of step
13

14 [f g] = logistic regression(train, theta,'fg');
15 [ft, ~] = logistic regression(train, t.*v + theta, 'f');
16 error = abs(ft - f - (g'*v)*t);
17

18 loglog(t, error, t, t.ˆ2)
19 title('Error of taylor expantion of order 1 versus step length')
20 xlabel('step length')
21 legend('error','O(tˆ2)')

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

step length

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Error of taylor expantion of order 1 versus step length

error

O(t2)

The basic idea of this is to compute a Taylor expansion of order two that involve both the gradient
and different values of the function, and to see if this work. In some sense it could be a method
to approximate the gradient and it’s called Finite difference method. As it is a order two Taylor
polynomial, the error is by definition of order two, which is what we obtain in the plot and confirm
the coherence of our code. We notice that for too small values, the curve tend to be irregular and go
away of the line, showing the limits and the round-off errors of the computer.

4

Benôıt Müller Homework 1 October 4, 2023

9. We compute the hessian of fλ :

∇2fλ(θ) = D(∇fλ)(θ) = XDθ(σ(X>θ)) + λI = X(Dσ)(X>θ)X> + λI = Xdiag(σ′(X>θ))X> + λI

= Xdiag(σ′(X>θ))X> + λI.

Its spectral norm can be bounded as follow, using the under-linearity and under-multiplicity :

‖∇2fλ(θ)‖ ≤ ‖X‖‖diag(σ′(X>θ))‖‖X>‖+ λ ≤ ‖X‖2 sup |s′|+ λ.

We see that the function |σ′| = σ′ has a max in 0 by looking at its derivative that change of sign in 0,
because

σ′(z) =
ez

(1 + ez)2
and σ′′(z) =

ez(1− ez)
(1 + ez)3

.

The bound is then sup |σ′| = maxσ′ = σ′(0) = 1/4 Finaly, the spectral norm of the hessian is smaller
than L := 1/4‖X‖2 + λ. By a result of the course, fλ being twice continuously differentiable, is
L-strongly convex.

10. By running 1/4 * norm(X)ˆ2 in MATLAB, we obtain 1/4‖X‖2 ≈ 198 570

11. A classic implementation of the gradient descent :

1 function [theta, grad, time]= my optimizer(theta0, maxtime)
2

3 % optimize logistic regression by const step GD
4 %
5 % INPUT theta0 : initial point
6 % maxtime : maximal time of research
7 %
8 % OUTPUT theta : last point of search
9 % grad : vector of succesive norm of gradient

10 % time : vector of successive time
11

12 % Answer to Question 11.
13

14 load('mnist train test.mat');
15 f = @(theta) logistic regression(train, theta,'g');
16 L = norm(train.X)ˆ2 /4 + 1e-4;
17 alpha = 1/L;
18

19 theta = theta0;
20 grad = [];
21 time = [];
22 tic
23 while toc < maxtime
24 time = [time toc];
25 [~, G] = f(theta);
26 grad = [grad norm(G)];
27 theta = theta - alpha * G;
28 end
29 end

12. The code and the plot of the norm of the gradient ‖∇fλ(θk)‖ as a function of k (log-scale on the
vertical axis):

1 %%%

5

Benôıt Müller Homework 1 October 4, 2023

2 % Question 12
3 % gradient norm of GD method versus number of steps
4 %%%
5

6 theta0 = rand(785,1); % random start
7 maxtime = 5*60; % maximal time
8

9 [theta, grad, ~] = my optimizer(theta0, maxtime);
10 semilogy(grad)
11 title('gradient norm of GD method versus number of steps')
12 xlabel('number of steps')
13 ylabel('gradient norm')

0 1 2 3 4 5 6

number of steps 10
4

10
0

10
1

10
2

10
3

10
4

10
5

g
ra

d
ie

n
t

n
o

rm

gradient norm of GD method versus number of steps

13. We have shown that fλ is twice differentiable with Lipschitz continuous gradient, is strongly convex,
and has a unique critical point with positive hessian, so by a theorem of the course, the method converge
to this point. Moreover the evaluations of the function converge at least linearly to the minimum. the
norm of the gradient converge at leat linearly to zero with rate r =

√
1− 1/k where k is the condition

number of the hessian of the minimizer.

In our plot the method clearly converge, very fast at first, but eventually go very slower which motivate
the use of line search methods.

6

Benôıt Müller Homework 1 October 4, 2023

14. We implement the line search method. The parameters have been chosen like this : α = 20 ρ = 0.5,
c = 10−4. The choice for c and ρ are usual values. We ploted the chosen values of ρkα for each step
of the algoritm when we put a a big initial α and a ρ close to 1(for precision), so we can see the most
frequent values chosen. All of this made us choose α = 20, and keep ρ = 0.5 for short computational
time.

Here the code and the plot :

1 function [theta, grad, time]= my optimizer2(theta0, maxtime)
2

3 % Optimize logistic regression with...
4 % backtracking line-search GD method.
5 %
6 % INPUT theta0 : first point of research
7 % maxtime : maximal time of research
8 %
9 % OUTPUT theta : last point of research

10 % grad : vector of the succesive norms of gradient
11 % time : vector of successives times
12

13 % Answer to Question 14.
14

15 load('mnist train test.mat');
16 fg= @(theta) logistic regression(train,theta,'fg');
17 f= @(theta) logistic regression(train,theta,'f');
18 g= @(theta) logistic regression(train,theta,'g');
19

20 alpha0=20;
21 rho=0.5; % in [0.5,0.8]
22 c=1e-4;
23

24 theta=theta0;
25 grad=[];
26 time=[];
27 tic
28 while toc<maxtime
29 time=[time toc];
30 [F, G]=fg(theta);
31 grad=[grad norm(G)];
32 alpha=alpha0;
33 [Fnext, ~]=f(theta - alpha*G);
34 while Fnext > F - c * alpha * G'*G
35 alpha = alpha * rho;
36 [Fnext, ~]=f(theta - alpha*G);
37 end
38 theta = theta - alpha*G;
39 end
40 end

7

Benôıt Müller Homework 1 October 4, 2023

0 1000 2000 3000 4000 5000 6000

number of steps

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

g
ra

d
ie

n
t

n
o

rm
Gradient norm of backtracking line-search GD versus number of steps (question 14)

The resulting theta obtained at the end of this program is stored in a variable file (final theta.mat)
and will be used for the algorithm.

15. The code and the plot for both methods with respect to the time :

1 %%
2 % Question 15
3 % gradient norm of GD methods versus time steps
4 %%%
5

6 theta0 = rand(785,1);
7 maxtime = 5*60;
8

9 [~, grad, time] = my optimizer(theta0, maxtime);
10 [~, grad2, time2] =my optimizer2(theta0, maxtime);
11

12 semilogy(time, grad, time2, grad2)
13 title('Gradient norm of GD methods versus time steps (question 15)')
14 xlabel('time [s]')
15 ylabel('gradient norm')
16 legend('GD','backtracking line-search GD')

8

Benôıt Müller Homework 1 October 4, 2023

0 50 100 150 200 250 300

time [s]

10
-6

10
-4

10
-2

10
0

10
2

10
4

g
ra

d
ie

n
t

n
o

rm
Gradient norm of GD methods versus time steps (question 15)

GD

backtracking line-search GD

16. The code to show the resulting θ and the value of b:

1 %%
2 % Question 16
3 % Display of the image of the minimizer theta
4 %%%
5

6 load('final theta.mat')
7 b=final theta(end)
8 showMNISTImage(final theta)
9 title('the resulting image of the minimizer theta')

9

Benôıt Müller Homework 1 October 4, 2023

b = -1.1452

the resulting image of the minimizer theta

0 5 10 15 20 25 30

5

10

15

20

25

17. the final code that report the results :

1 %%
2 % Question 17
3 % Display the images that our theta got wrong
4 %%%
5

6 load('mnist train test.mat');
7 load('final theta');
8

9 fprintf('\n\n RESULTS ON THE TEST DATA : \n')
10 results(test,final theta);
11 title('mispredicted images of test')
12

13 fprintf('\n RESULTS ON THE TRAIN DATA : \n')
14 results(train,final theta);
15 title('mispredicted images of train')
16

17 function results(data,theta)
18 X = data.X ;
19 y = data.y' ;
20 sigma = @(x) (1+exp(-x)).ˆ(-1);
21 z = sigma(theta' * X); % probability
22 prediction = z > 0.5;
23 error = prediction ~= y;
24 m=length(y);
25 % display on the command window :
26

27 text='On the %d image(s), %d have been mispredicted, giving %.2f%% of accuracy.\n';
28 fprintf(text,m, sum(error),100*(m-sum(error))/m);

10

Benôıt Müller Homework 1 October 4, 2023

29

30 text= 'The average difference beetween the probabilty and the resulting';
31 text=[text ,' prediction is ~%.1d.\n'];
32 text= [text 'The %d mispredicted images have probability : \n'];
33 fprintf(text, sum(abs(z-prediction))/m, sum(error))
34 fails probabilities=z(error)
35

36 showMNISTImages many(X(:,error))
37 end

With the following output in the command window :

1 RESULTS ON THE TEST DATA :
2 On the 2115 image(s), 1 have been mispredicted, giving 99.95% of accuracy.
3 The average difference between the probability and the resulting prediction is ~1.5e-04.
4 The 1 mispredicted images have probability :
5

6 fails probabilities =
7

8 0.9984
9

10

11 RESULTS ON THE TRAIN DATA :
12 On the 12665 image(s), 0 have been mispredicted, giving 100.00% of accuracy.
13 The average difference between the probability and the resulting prediction is ~8.9e-08.
14 The 0 mispredicted images have probability :
15

16 fails probabilities =
17

18 1 0 empty double row vector

In conclusion, the algorithm has been infallible on the train data, and has made only one mistake on
the test data. Here is the mispredicted image :

11

Benôıt Müller Homework 1 October 4, 2023

mispredicted images of test

We conclude that our algorithm is coherent and allows to actually read images with a certain reliability
as it worked well enough on the completely new data, with respect to our overarching goal.

12

