
MATH-329 Nonlinear optimization Homework 2:

Trust-region and Gaussian mixture models

Anya-Aurore Mauron & Benôıt Müller

October 4, 2023

Remarks

Each file named questionX.m is the main script file of the question number X. Some of them are live
scripts, run each sections separately as needed.

The other files are data or functions named after their utility. Running the main scripts of the
questions give the outputs detailed in this document.

Answers

1. We directly compute

f(µ) = − log
(N∏
n=1

φ(xn, µ,Σ)
)

=

N∑
n=1

log

(
1

σd(2π)d/2
exp

(‖xn − µ‖2
2σ2

))

=

N∑
n=1

(
log(σd(2π)d/2) +

‖xn − µ‖2

2σ2

)
= dN log(σ

√
2π) +

1

2σ2

N∑
n=1

‖xn − µ‖2.

2. The function f is a quadratic function (C∞) so the convexity is entirely determined by its hessian.
The gradient is

∇f(µ) = ∇µ
(
dN log(σ

√
2π) +

1

2σ2

N∑
n=1

‖xn − µ‖2
)

=
1

2σ2

N∑
n=1

∇µ‖xn − µ‖2

=
1

2σ2

N∑
n=1

2(µ− xn) =
N

σ2

(
µ− 1

N

N∑
n=1

xn

)
,

and the hessian is then N
σ2 Id. Since N/σ2 is strictly positive, the hessian is obviously strictly positive

definite and the function is strictly convex. For a positive scalar l, if we substract l/2‖µ‖2 = l/2
from f(µ) and still want it to be convex, we must have N/σ2− l ≥ 0 because it is again a quadratic
function. This give us l ≤ N/σ2 as a necessary and sufficient condition for f to be l-strongly convex.

3. The only critical point is the mean 1
N

∑
n xn and it’s the global minimum, because f isN/σ2-strongly

convex. That is quiet what we could have intuitively expected, µ being the mean of the random
variables xn.

1

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

4. We consider the particular case N = 1, K = 2, d = 1 and plot the function for some data point x1

and parameters σ, π1, π2 chosen randomly. We obtain a non-convex plot, as we can see on the four
non convex edges of Figure [1].

Figure 1: The function f with its four non convex edges

However, if we zoom enough we can see a possibly local convex minimum in Figure [2].

5. We develop the formula of f :

f(M) = − log
(N∏
n=1

K∑
k=1

πkφ(xn, µk,Σ)
)

= −
N∑
n=1

log
(K∑
k=1

πkφ(xn, µk,Σ)
)

= −
N∑
n=1

log

(K∑
k=1

πk
σd(2π)d/2

exp
(
− ‖xn − µk‖

2

2σ2

))

= Nd log(σ
√

2π)−
N∑
n=1

log

(K∑
k=1

πk exp
(
− ‖xn − µk‖

2

2σ2

))
(1)

Here we see that the expression (1) look like the log-sum-exp function, i.e. LSE(α) = log(
∑
j e
αj).

It is a smooth approximation of maxj(αj). Moreover, the expression can lead to overflow because
it involves computing to small exponentials of possibly smalls numbers before the log turn them
back to actually stockable values.

2

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

Figure 2: The function f with a zoom on a possible local convex minimum

The resulting computation done by the machine would be ”log(
∑
esmall) = log(0) = −∞”, while

actually ”log(
∑
esmall) > log(esmall) = small”. We deal with this by rearranging the formula:

We set αnk = −‖xn − µk‖2/(2σ2) + log(πk), and f is then Nd log(σ
√

2π) −
∑
n LSE(αn). A best

way to write LSE for numeric stability, is to factorise exp(ᾱn)to the sum, with ᾱn = maxk α
k
n :

LSE(αn) = log(
∑
k

eᾱneα
k
n−ᾱn) = ᾱn + log(

∑
k

eα
k
n−ᾱ

n

)

Like this we can accurately compute the main small part of the sum, as the exp vanishes with the
log. In the sum remain the exponentials of the differences to the maxima which sure are less likely
to become to smalls if the values are near from each others. In all cases, there will always be a

eα
k
n−ᾱ

n

= eα
k
n−α

k
n = 1 term in the sum, assuring that even when values are far from each other and

zeros comes in the sum, the argument form the log stay near over 1 and the log will likely vanish,
leaving the max as a approximation of the result, which is good.

The formula is then

f(M) = Nd log(σ
√

2π)−
∑
n

LSE(αn) = Nd log(σ
√

2π)−
∑
n

(
ᾱn + log(

∑
k

eα
k
n−ᾱ

n

)

)
= Nd log(σ

√
2π)−

∑
n

(
ᾱn + log(

∑
k

eα
k
n−ᾱ

n

)

)
.

To implement it and avoid slow loops, we use multidimensional arrays. The idea is to have a
dimension for the k-sum, a dimension for the n-sum and a last for the dimension d of the space.

3

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

With X of dimension 1 × N × d and M of dimension K × 1 × d, X-M is then the 3D matrix with
(X −M)knδ = (xn − µk)δ, which permit us to compute ‖xn − µk‖2 with sum((X-M).ˆ2,3) We
use this to compute α with -sum((X - M).ˆ2 , 3) / (2*sigmaˆ2) + log(Pi') and continue
computing the elements with array operations paying attention to dimensions compatibility.

The detailed code with arrays sizes is the following :

1 function [f] = log likelihood(M, X, sigma, Pi)
2

3 % Compute the negative log-likelihood function
4 % of the data points X=[x1,...,xN] sampled randomly
5 % with probability repartition Pi=[pi1,...,piK]
6 % from K clusters of multivrariable normal laws with means M=[mu1,...,muK]
7 % and all with covariance sigma*I.
8 % Matrices shapes: d for first dimension and N or K for second.
9

10 % Concern Questions 4-5
11

12 [d, N] = size(X);
13 X = permute(X,[3 2 1]); % 1*N*d
14 M = permute(M, [2 3 1]); % K*1*d
15

16 % alpha(k,n) = | | x n - mu k | |ˆ2 / (2*sigmaˆ2) + log(Pi k) :
17 alpha = -sum((X - M).ˆ2 , 3) / (2*sigmaˆ2) + log(Pi'); % K*N
18 beta = max(alpha); % 1*N
19 LSE = beta + log(sum(exp(alpha - beta))); %1*N
20 f = d*N*log(sigma*sqrt(2*pi)) - sum(LSE);
21 end

6. Let’s rewrite the value of φn(µ), using a new scalar function ψ:

φn(µ) =
1

σd(2π)d/2
exp

(
− ‖xn − µ‖

2

2σ2

)
=: ψ(‖xn − µ‖2).

We can then compute its gradient with the composition formula:

∇φn(µ) = ψ′(‖xn − µ‖2)∇µ‖xn − µ‖2 = − 1

2σ2
ψ(‖xn − µ‖2)(−2(xn − µ)) =

φn(µ)

σ2
(xn − µ).

7. Let’s compute the value of ∇µj
f(M) using the linearity of the gradient, the composition formula

with respect to the log, and the previous question:

∇µj
f(M) = −∇µj

N∑
n=1

log

(K∑
k=1

πkφn(µk)

)
= −

N∑
n=1

∇µj
log

(K∑
k=1

πkφn(µk)

)

= −
N∑
n=1

log′
(K∑
k=1

πkφn(µk)

)
∇µj

K∑
k=1

πkφn(µk)

= −
N∑
n=1

(K∑
k=1

πkφn(µk)

)−1 K∑
k=1

πk∇µj
φn(µk)

= −
N∑
n=1

(K∑
k=1

πkφn(µk)

)−1

πj
φn(µj)

σ2
(xn − µj) =

πj
σ2

N∑
n=1

γnφn(µj)(µj − xn)

8. As a result of the previous question, the gradient of f is then ∇f(M) = (∇µ1
f(M), . . . ,∇µK

f(M))

4

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

9. We rewrite the formula of ∇f(M) obtained in question 7. :

∇µjf(M) =
πj
σ2

N∑
n=1

γnφn(µj)(µj − xn)

Now we see that γn and φn(µj) have a factor σd(2π)d/2 that cancel out. Moreover they both contain
exponentials that can be very small, so we decide for computational stability to distribute the exp
of φn(µj) in the sum of γn and put their exponents together :

∇µj
f(M) =

πj
σ2

N∑
n=1

γnφn(µj)(µj − xn) =
πj
σ2

N∑
n=1

1∑
k πk

φn(µk)
φn(µj)

(µj − xn)

=
πj
σ2

N∑
n=1

1∑
k πk exp

(‖xn−µj‖2−‖xn−µk‖2
2σ2

) (µj − xn) =
πj
σ2

N∑
n=1

(K∑
k=1

πke
(βj

n−β
k
n)
)−1

(µj − xn)

with βkn = ‖xn − µk‖2/(2σ2). Like this we compute the differences before doing the exponentials

which is better. There is no danger to divide by a infinitesimal k-sum as the term πje
(βj

n−β
j
n) =

πj > 0 is supposed to be not as small.

Again, we use multidimensional array to compute the gradient of f . The idea is to have a dimension
for the dimension d of the space or the change of column of the gradient along j; a dimension for
the k-sum; and a dimension for the n-sum. We compute β similarly as question question 5., by
reshaping X and M judicially. We set then a 3D matrix B with Bkjn = βjn − βkn using reshaped
versions of β. We can then write the k-sum as a particular matrix product of Pi and eB , and so
on . . . The choices of matrix shapes are detailed in the following code of grad log likelihood.m :

1 function [g] = grad log likelihood(M, X, sigma, Pi)
2

3 % Compute the gradientof the negative log-likelihood function
4 % of the data points X=[x1,...,xN] sampled randomly
5 % with probability repartition Pi=[pi1,...,piK]
6 % from K clusters of multivrariable normal laws with means M=[mu1,...,muK]
7 % and all with covariance sigma*I.
8 % Matrices shapes: d for first dimension and N or K for second.
9

10 % Concern Question 9
11

12 [d, N] = size(X) ;
13 X = permute(X,[1, 3, 2]) ; % d*1*N
14 % M is d*K
15 diff = M-X ; % d*K*N
16 alpha = sum(diff.ˆ2) / (2*sigmaˆ2) ; % 1*K*N
17 A = alpha - permute(alpha, [2,1,3]) ; %K*K*N
18 g = Pi .* sum((M-X) ./ sum(Pi'.*exp(A)) , 3) / sigmaˆ2 ; % d*K
19

20 end

1 function [f , g] = funct grad(M, X, sigma, Pi)
2

3 % Compute the negative log-likelihood function and its gradient
4 % of the data points X=[x1,...,xN] sampled randomly
5 % with probability repartition Pi=[pi1,...,piK]
6 % from K clusters of multivrariable normal laws with means M=[mu1,...,muK]

5

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

7 % and all with covariance sigma*I.
8 % Matrices shapes: d for first dimension and N or K for second.
9

10 % Concern Question 9
11

12 % for clarity, we follow the current matrix dimensions by mentioning
13 % them as commentaries like this: d1*d2*...*dj .
14

15 % The gradient g :
16 [d, N] = size(X) ;
17 X = permute(X,[1 3 2]) ; % d*1*N
18 % M is d*K
19 diff = M-X ; % d*K*N
20 alpha = sum(diff.ˆ2) / (2*sigmaˆ2) ; % 1*K*N
21 A = alpha - permute(alpha,[2,1,3]) ; %K*K*N
22 g = Pi .* sum((M-X) ./ sum(Pi'.*exp(A)) , 3) / sigmaˆ2 ; % d*K
23

24 X = permute(X,[3 2 1]); % 1*N*d
25 M = permute(M, [2 3 1]); % K*1*d
26

27 % The function f :
28 alpha = -squeeze(alpha) + log(Pi'); % K*N
29 beta = max(alpha); % 1*N
30 LSE = beta + log(sum(exp(alpha - beta))); %1*N
31 f = d*N*log(sigma*sqrt(2*pi)) - sum(LSE);
32 end

10. We write a classic backtracking line-search gradient descent algorithm of f :

1 function [M, grad, time,obj value]= BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c)
2

3 % Backtracking Line-Search Gradient Descent of
4 % the negative log-likelihood function "log likelihood.m"
5 %
6 % INPUT maxtime : maximal time of research
7 % M0 : initial point
8 % X : data
9 % pis : probabiliy repartition of clusters

10 % sigma : matrix of covariance = sigma*I
11 % alpha0 : initial time step
12 % rho : factor of discrease of the current alpha
13 % c : exigence of approvment
14 %
15 % OUTPUT M : last point of research
16 % grad : vector of the succesive norms of gradient
17 % time : vector of successives times
18 % obj value : objective value of M
19

20

21 X = X';
22 Pi = pis';
23

24 f = @(M) log likelihood(M, X, sigma, Pi);
25 fg = @(M) funct grad(M, X, sigma, Pi);
26

27

28 M=M0;
29 grad=[];
30 time=[];
31 tic

6

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

32 while toc < maxtime
33 time = [time, toc];
34 [F, G] = fg(M);
35 grad = [grad norm(G,'fro')];
36 alpha = alpha0;
37 Fnext=f(M - alpha*G);
38 while Fnext > F - c * alpha * sum(G.*G,'all')
39 alpha = alpha * rho;
40 Fnext = f(M - alpha*G);
41 end
42 M = M - alpha*G;
43 end
44 obj value=f(M);
45 end

11. Here is the function display data means.m to plot the data points and the K cluster means (µk):

1 function display data means(X, M)
2 X=X';
3 scatter(X(1,:),X(2,:),'MarkerEdgeAlpha',0.1) %for transparency
4 hold on
5 plot(M(1,:),M(2,:),'ro')
6 title('Data points and K clusters means')
7 end

Then running the line-search algorithm on data-toy.mat (see the implementation in question11.m),
we obtain the graph in Figure [3] after a few trials.

1 clc
2 clear
3 close
4

5

6 load('data-toy.mat');
7 maxtime=4;
8 alpha0=1e-2;
9 rho=0.5; % in [0.5,0.8]

10 c=1e-4;
11 M0 = mean(X',2) .* ones(1,K) + 1e-4*rand(d,K);
12

13 [M 1,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
14 display data means(X,M 1)

7

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

Figure 3: Plot of the data points in blue and the K cluster means (µk) in red.

The four clusters in red are in the middle of the four groups of data, in blue. We can conclude that
our algorithm indeed outputs reasonable results.

12. First, we run the algorithm with different initializations M0 and observe how the objective value
changes (see the first plot in Figure [4]). Then, with a fixed random initialization, we try different
ᾱ ∈ [10−2, 1], ρ ∈ [0.5, 0.8] and c ∈ [10−5, 10−3]. See the implementation below.

We observe by Figure [4] that starting with a random initialization can vary the results. The value
of ᾱ has an even more noticeable impact on the objective value. On the other hand, we note that
varying ρ and c in their respective intervals does not change the objective value.

The values ρ and c don’t have a big impact on the objective values because of their respective roles;
ρ is the the decreasing speed of α-candidates, and c is an ”accuracy” constant on the estimation of
the progress that each step produces.

On the other hand, ᾱ effects the final result more because its role is to give the biggest step one
can take in the direction of the gradient.

We choose ᾱ = 10−2, ρ = 0.5 and c = 10−4 for the next questions, according to the results above
and the initial value given in the homework for ρ and c.

We can explain the unstable behavior of the objective value by varying the initial parameter by
the fact that the gradient descent algorithm depends a lot on where the algorithm starts. Also, we
do not have the theory that gradient descent actually converges in this case, since most results we
established were for convex and strongly convex functions.

Note also that f has 2 axes where the function seems to be quite flat. If the starting point lies on
one of them, the algorithm might be trapped in a very slow procedure. Moreover we observe on the
plot that the function f is bounded below, but it still does not guarantee that f has a minimum.

8

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

0 5 10 15 20 25

iteration

1.44

1.45

1.46

1.47

O
b
je

c
ti
v
e
 v

a
lu

e

10
4 Different random initializations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha

1.4

1.6

1.8

O
b
je

c
ti
v
e
 v

a
lu

e

10
4 Varying alpha

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

rho

1.4442911098304

1.4442911098305

1.4442911098306

O
b
je

c
ti
v
e
 v

a
lu

e

10
4 Varying rho

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c 10
-3

1.4442

1.4443

1.4444

O
b
je

c
ti
v
e
 v

a
lu

e

10
4 Varying c

Figure 4: Plots of the objective value with respect to different parameters. When not varying, ᾱ = 10−2,
ρ = 0.5 and c = 10−4.

We observe then that the backtracking line search method does converge on a stationary point, by
the various trials we ran, see next question. We see on the graph that the stationary points are the
set of the 2 axes, so we can conclude that BLSGD must reach a point belonging to it.

1 clc
2 clear
3 close
4

5

6 load('data.mat');
7 maxtime=4;
8

9 N=25;
10 I=1:1:N;
11 Alphas=linspace(1e-2,1,N);
12 Rhos=linspace(0.5,0.8,N);

9

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

13 Cs=linspace(1e-5,1e-3,N);
14

15 %% Running with different random initializations
16 %We run the algorithm several times, and see if the results vary.
17 alpha0=1e-2;
18 rho=0.5;
19 c=1e-4;
20 obj values rand init=zeros(1,N);
21 for i=I
22 M0 = mean(X',2) .* ones(1,K) + 1e-4*rand(d,K);
23 [M,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
24 obj values rand init(i)=obj value;
25 end
26

27 %% Varying alpha0
28 obj values Alphas=zeros(1,N);
29 rho=0.5;
30 c=1e-4;
31

32 for i=I
33 alpha0=Alphas(i);
34 [M,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
35 obj values Alphas(i)=obj value;
36 end
37

38 %% Varying rho
39 obj values Rhos=zeros(1,N);
40 alpha0=1e-2;
41 c=1e-4;
42

43 for i=I
44 rho=Rhos(i);
45 [M,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
46 obj values Rhos(i)=obj value;
47 end
48

49 %% Varying c
50 obj values Cs=zeros(1,N);
51 alpha0=1e-2;
52 rho=0.5;
53

54 for i=I
55 c=Cs(i);
56 [M,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
57 obj values Cs(i)=obj value;
58 end
59

60 %% Comparing results
61 subplot(4,1,1)
62 plot(I,obj values rand init)
63 title('Different random initializations');
64 grid on
65 xlabel('iteration');
66 ylabel('Objective value');
67

68 subplot(4,1,2)
69 plot(Alphas,obj values Alphas)
70 title('Varying alpha');
71 grid on
72 xlabel('alpha');
73 ylabel('Objective value');
74

10

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

0 100 200 300 400 500 600 700 800 900

Iteration

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

N
o
rm

 o
f
th

e
 g

ra
d
ie

n
t

Figure 5: Graph for question 13. The norm of the gradient of the 10 trials done with different initialisation
with the backtracking line-search method.

75 subplot(4,1,3)
76 plot(Rhos,obj values Rhos)
77 title('Varying rho');
78 grid on
79 xlabel('rho');
80 ylabel('Objective value');
81

82 subplot(4,1,4)
83 plot(Cs,obj values Cs);
84 title('Varying c');
85 grid on
86 xlabel('c');
87 ylabel('Objective value');

13. We run the backtracking line search method a few times to observe several trials, each trial having
a different initialization. We decided to run the algorithm 10 times, see the implementation in
question13.m below. On Figure [5], we notice that the gradient reaches an important norm of of
more than 100 in the beginning of the method. Then we observe that the norm of the gradient
rapidly converges to zero. After about 400 iterations, it is already below 10−4 for all trials.

The gradient converges well to zero. Hence we have chosen good initial values at the previous point.

1 clc
2 clear
3 close
4

5

11

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

6 load('data.mat');
7 maxtime=4;
8 alpha0=1e-2;
9 rho=0.5; % in [0.5,0.8]

10 c=1e-4;
11

12 for i=1:10
13 M0 = mean(X',2) .* ones(1,K) + 1e-4*rand(d,K);
14 [M,grad,time,obj value]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
15 iterations=1:1:size(grad,2);
16 semilogy(iterations,grad)
17 hold on
18 end
19

20 xlabel('Iteration'); ylabel('Norm of the gradient');
21 grid on

14. We use the definition of the gradient of f obtained in question 7.:

∇µi
f(M) =

πi
σ2

N∑
j=1

γjφj(µi)(µi − xj).

In order to calculate the hessian of f evaluated at V , we use the definition:

∇2f(M)[V] = lim
t→0

∇f(M + tV)−∇f(M)

t

with M = [µ1, · · · , µK] and V = [v1, · · · , vK] ∈ Rd×K .

Let’s calculate ∇2f(M)[V] for each of its component. For i = 1, ...,K :

∇µi
f(M + tV)−∇µi

f(M) =
πi
σ2

N∑
j=1

γM+tV
j φj(µi + tvi)(µi + tvi − xj)− γMj φj(µi)(µi − xj)

=
πi
σ2

N∑
j=1

(γM+tV
j − γMj)φj(µi + tvi)(µi + tvi − xj)

+ γMj
(
φj(µi + tvi)(µi + tvi − xj)− φj(µi)(µi − xj)

)
with γMj = 1∑K

k=1 πkφj(µk)
. Let’s call the first part of the sum

Aji (t) := (γM+tV
j − γMj)φj(µi + tvi)(µi + tvi − xj)

and the second part

Bji (t) := γMj
(
φj(µi + tvi)(µi + tvi − xj)− φj(µi)(µi − xj)

)
.

Let’s look at the first part Aji (t). We can express the value γM+tV
j :

γM+tV
j =

1∑K
k=1 πkφj(µk + tvk)

=
1∑K

k=1 πkφj(µk) +
∑K
k=1 πk∇φj(µk)>tvk +O(t2)

=
1∑K

k=1 πkφj(µk)
−
t
∑K
k=1 πk∇φj(µk)>vk +O(t2)(∑K

k=1 πkφj(µk)
)2 +O(t2)

= γMj − γ2
j

(
t

K∑
k=1

πk∇φj(µk)>vk +O(t2)
)

+O(t2)

12

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

by two expansions of Taylor of order 1. Indeed, the Taylor expansion at t = 0 can be generically
expressed as :

f(a+ tb) = f(a) + f ′(a)tb+O(t2)

The first expansion is applied on
∑K
k=1 πkφj(µk+tvk) at the second equality, with f(x) =

∑K
k=1 πkφj(x),

a = µk and b = vk.

The second expansion of Taylor is applied at the third equality, with f = 1
x , a =

∑K
k=1 πkφj(µk)

and b =
∑K
k=1 πk∇φj(µk)>vk +O(t).

Now, taking the limit:

lim
t→0

Aji (t)

t
= lim
t→0

γM+tV
j − γMj

t
φj(µi + tvi)(µi + tvi − xj)

= lim
t→0

−γ2
j

(
t
∑K
k=1 πk∇φj(µk)>vk +O(t2)

)
+O(t2)

t
φj(µi + tvi)(µi + tvi − xj)

= −γ2
j

(K∑
k=1

πk∇φj(µk)>vk
)
φj(µi)(µi − xj)

= γ2
j

(K∑
k=1

πk∇φj(µk)>vk
)
φj(µi)(xj − µi)

Let’s look at Bji (t) now:

Bji (t) = γMj
[(
φj(µi + tvi)− φj(µi)

)
(µi + tvi − xj) + φj(µi)

(
(µi + tvi − xj)− (µi − xj)

)]
= γMj

[(
φj(µi + tvi)− φj(µi)

)
(µi + tvi − xj) + φj(µi)tvi

]
Then, taking the limit:

lim
t→0

Bji (t)

t
= lim
t→0

γMj
[φj(µi + tvi)− φj(µi)

t
(µi + tvi − xj) +

φj(µi)tvi
t

]
= γMj

[
〈∇φj(µi), vi〉(µi − xj) + φj(µi)vi

]
= γj

[φj(µi)
σ2

(xj − µi)>vi(µi − xj) + φj(µi)vi
]

= γjφj(µi)
[1

σ2
(xj − µi)>vi(µi − xj) + vi

]
The second equality comes from the definition of the gradient. The third one comes from the
definition of the scalar product and from the result found in question 6.

From now we will write γMj = γj as defined in the homework. Hence, we obtain, for i = 1, ...,K:

(∇2f(M)[V])i = lim
t→0

∇µi
f(M + tV)−∇µi

f(M)

t
=
πi
σ2

N∑
j=1

lim
t→0

Aji (t)

t
+ lim
t→0

Bji (t)

t

=
πi
σ2

N∑
j=1

γ2
j

[K∑
k=1

πk∇φj(µk)>vk
]
φj(µi)(xj − µi) + γjφj(µi)

[1

σ2
(xj − µi)>vi(µi − xj) + vi

]
By developping the gradient of φj and rearranging the terms, we get such an expression for the
hessian of f with direction V , for i = 1, ...,K:

13

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

(∇2f(M)[V])i =
πi
σ2

N∑
j=1

[K∑
k=1

πk
γ2
jφj(µk)φj(µi)

σ2
(xj − µk)>vk

]
(xj − µi) + γjφj(µi)

[1

σ2
(xj − µi)>vi(µi − xj) + vi

]
.

We easily check that for i = 1, ...,K, (∇2f(M)[V])i is in Rd. Indeed xj , µi and vi are all in Rd.
The other terms are scalar in R. The products (xj − µk)>vk and (xj − µi)>vi are also in R.

Since each component of ∇2f(M)[V] is in Rd and that there are K components of ∇2f(M)[V],
then ∇2f(M)[V] ∈ Rd×K .

15. For the implementation of ∇2f(M)[V], we choose to use the same method as to calculate the
gradient of f , i.e. using the function sum in matlab and multidimensions.

In the following, we repeat the notation we use:

βkn =
‖xn − µk‖2

2σ2

So considering γjφj(µi), for j = 1, ..., N , i = 1, ...,K:

γjφj(µi) =
φj(µi)∑K

k=1 πkφj(µk)
=

1∑K
k=1 πk

φj(µk)
φj(µi)

=
1∑K

k=1 πk exp(−βkj + βij)

=
(K∑
k=1

πk exp(−βkj + βij)
)−1

Similar calculations for γ2
jφj(µk)φj(µi), for j = 1, ..., N , k = 1, ...,K, and i = 1, ...,K:

γ2
jφj(µk)φj(µi) =

φj(µk)φj(µi)(∑K
l=1 πlφj(µl)

)2 =
1(∑K

l=1 πlφj(µl)
)2 1
φj(µk)φj(µi)

=
1(∑K

l=1 πl
φj(µl)√

φj(µk)φj(µi)

)2 =
(K∑
l=1

πl
φj(µl)√

φj(µk)φj(µi)

)−2

=
(K∑
l=1

πl exp(−βlj +
1

2
βkj +

1

2
βij)
)−2

We implement such a form for (∇2f(M)[V]) in hessian log likelihood.m, for i = 1, ...,K:

(∇2f(M)[V])i =
πi
σ2

N∑
j=1

[K∑
k=1

πk
σ2

(K∑
l=1

πl exp(−βlj +
1

2
βkj +

1

2
βij)
)−2

(xj − µk)>vk
]
(xj − µi)

+
(K∑
k=1

πk exp(−βkj + βij)
)−1[1

σ2
(xj − µi)>vi(µi − xj) + vi

]
In the code, the so called ”fist part of the Hessian” is the first line of the formula above and,
respectively, the ”second part of the Hessian” is the second line.

14

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

1 function H=hessian log likelihood(M,v,X,sigma,Pi)
2 %Compute the Hessian of the negative log-likelihood function of the
3 %data points X=[x 1,...,x N] sampled randomly
4 % with probability repartition Pi=[pi 1,...,pi K]
5 % from K clusters of multivariable normal laws with means M=[mu 1,...,mu K]
6 % and all with covariance sigma*I, in the direction v.
7

8 %Concern Questions 15
9

10 X = permute(X,[1, 3, 2]) ; % d*1*N
11 % M is d*K
12 diff = M-X; % d*K*N
13 beta = sum(diff.ˆ2) ./ (2*sigmaˆ2) ; % 1*K*N in order to calculate phi
14

15 %we write the components in the following order : (i,j,k,l)
16 %then we can note that the dimensions should be : (K i,N j,K k,K l)
17 %sometimes the d-dimension is on the last or the fifth component.
18 %% first part of the Hessian:
19 res1=permute(X-M,[4,3,2,1]); %1xNxK kxd which is (X j-M k)'
20 res2=sum(res1.*permute(v,[4,3,2,1]),4); % 1xNxK k which is (X j-M k)'*V k
21 res3=res1; %1xNxK ixd
22 res3=permute(res3,[3,2,1,5,4]); %K ixNx1x1xd
23 res4=res2.*res3; %K ixNxK kx1xd which is (X j-M k)'*V k*(X j-M i)
24

25

26 %in exponential:
27 B= -permute(beta,[1,3,4,2]);
28 B=B+permute(1/2.*beta,[1,3,2]);
29 B=B+permute(1/2.*beta,[2,3,1]); %K ixNxK kxK l
30

31 %continue summing:
32 res5=sum(permute(Pi,[1,4,3,2]).*exp(B),4); %K ixNxK k
33 res5=res5.ˆ(-2); %K ixNxK k which is the sum over l to the -2
34 res6=res5.*res4; %K ixNxK kxd
35 res6=squeeze(res6);
36

37 res7=1/sigmaˆ2.*sum(permute(Pi,[1,3,2]).*res6,3);
38 res7=squeeze(res7); %K ixNxd;
39

40

41 res8=sum(res7,2);
42 res8=squeeze(res8); %K ixd
43 H=1/sigmaˆ2.*Pi'.*res8; %K ixd
44

45 %% second part of the Hessian:
46 res10=permute(X-M,[2,3,4,1]); %K ixNx1xd which is (X j-Mi)
47 res11=sum(res10.*permute(v,[2,4,3,1]),4); %K ixN which is (X j-M i)'*V i
48 res12=-res10; %K ixNx1xd which is (Mi-Xj)
49 res13=res11.*res12; %K ixNx1xd which is (X j-M i)'*V i*(Mi-Xj)
50 res13=res13./sigmaˆ2; %which is 1/sigmaˆ2*(X j-M i)'*V i*(Mi-Xj)
51 res14=res13+permute(v,[2,4,3,1]); %K ixNx1xd which is inside []
52

53 %the exponential:
54 C=-permute(beta,[1,3,2])+permute(beta,[2,3,1]); %K ixN K k
55 res15=sum(permute(Pi,[3,1,2]).*exp(C),3);%K ixN
56 res16=squeeze(sum(res15.ˆ(-1).*res14,2)); %K ixd sum over j=1,...,N
57

58 %% combine both part:
59 H=H+Pi'.*res16./sigmaˆ2;
60 H=H';
61 end

15

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

In question15.m, we check that our Hessian is correct, see Figure [6].

1 clc
2 clear
3 close
4 %QUESTION 15: check that our hessian is correct.
5 load('data-toy.mat');
6 X=X';
7 Pi=pis';
8

9 f = @(M) log likelihood(M, X, sigma, Pi); % function
10 g = @(M) grad log likelihood(M, X, sigma, Pi); % gradient
11

12 M = 3*rand(d, K); % random start
13

14 v = rand(size(M));
15 v = v / norm(v,'fro');% random direction
16 t = logspace(-8, 0, 100);
17

18 Ft = zeros(size(t));
19 F = f(M);
20 G = g(M);
21

22 Hv=hessian log likelihood(M,v,X,sigma,Pi);
23

24 for i=1:length(t)
25 Ft(i) = f(M + t(i)*v);
26 end
27

28 error = abs(Ft - F - trace(v'*G)*t-1/2*trace(v'*Hv)*t.ˆ2);
29 loglog(t, error, t, t.ˆ3)
30 title('Error of taylor expansion of order 2 of f versus step length (question15)')
31 xlabel('step length')
32 grid on
33 legend('error','$O(tˆ3)$','Interpreter','latex','Location','Southeast')

We indeed obtain a slope of 3, which confirms that our error is in O(t3) and that our hessian is
correct. Nevertheless, we observe some discrepancies for t < 10−4. The reason of this phenomena is
that the limit of the computer’s reliability has been reached. We are too close to this limit, which
causes numerical errors.

16. By exercise 1 of serie 6, we calculate which t must be used if we enter the if condition in the
algorithm (see line 42 of the code truncatedCG.m). We have that t must be such as :

‖vn‖2 = ∆2 ⇐⇒ ‖vn−1 + tpn−1‖2 = ∆2 ⇐⇒ 〈vn−1 + tpn−1, vn−1 + tpn−1〉 = ∆2.

This is equivalent to find t such as :

〈pn−1, pn−1〉t2 + 2〈vn−1, pn−1〉t+ 〈vn−1, vn−1〉 −∆2 = 0

which is a quadratic equation. By simple calculation, we find that the roots are given by:

t =
−〈vn−1, pn−1〉 ±

√
〈vn−1, pn−1〉2 − ‖pn−1‖2(‖vn−1‖2 −∆2)

‖pn−1‖2

By the course, we have to choose t ≥ 0. To guarantee that, we take the positive root, i.e.

16

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

step length

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Error of taylor expansion of order 2 of f versus step length (question15)

Figure 6: Graph for question 15. We observe that the slope is indeed of 3. See discrepancies for t < 10−4.

t =
−〈vn−1, pn−1〉+

√
〈vn−1, pn−1〉2 − ‖pn−1‖2(‖vn−1‖2 −∆2)

‖pn−1‖2
.

We implemented a code give t.m which gives the positive root t from the calculation above:

1 function t=give t(p,v,delta)
2 %%INPUT:
3 % p=p {n-1}
4 % v=v {n-1}
5 % delta=radius of TR
6 % OUTPUT:
7 % t= positive root
8

9 norm p square=trace(p'*p);
10 prod=trace(v'*p);
11 res=prodˆ2-norm p square*(trace(v'*v)-deltaˆ2);
12 t=1/norm p square*(-prod+sqrt(res));
13 end

You’ll notice the function at line 43 of truncatedCG.m.

By remark 6.16 of the course, we implement truncated CG such that it returns a boolean indicating
if the norm of uk is equal to ∆k (true) or not (false). This happens when v+

n−1 is outside of the
region defined by the sphere of radius ∆k, or when the hessian is not positive definite. This will
be useful when we will implement the trust region method. See below the code for the truncated
gradient. Moreover, the purpose of the value small is to terminate the procedure if the norm of rn

17

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

is smaller than small. In the homework:

small = ‖r0‖min(‖r0‖, κ)

with κ = 1/10.

1 function [u,Hu,delta attained]=truncatedCG(M,delta,g,H)
2 %Truncated gradient descent method
3 %INPUT: M: the current value M k
4 % rad: the current delta
5 % g: the current gradient
6 % H: the current hessian (not evaluate in a direction yet)
7 % OUTPUT: u (dimension dxK) and Hu (same dimension), u being the minimizer
8 % of the function m(v)=1/2 <v,Hv> - <b,v>. Output delta attained which is a
9 % boolean indicating if norm(u)=delta (true) or not (false). The latter

10 % will help for a condition in trust region limit.
11

12 %Question16
13

14

15 [d,K]=size(M);
16

17 b=-g;
18 r 0=b;
19 v prev=zeros(d,K); %dxK
20 r prev=r 0; %dxK
21 p prev=r prev; %dxK
22

23 maxit=500;
24 u=zeros(d,K);
25 Hu=zeros(d,K);
26

27 v next=v prev;
28 r next=r prev;
29 p next=p prev;
30

31 k=1/10;
32

33 small=norm(r 0,'fro')*min([norm(r 0,'fro') k]);
34

35 for i=1:maxit
36 Hp=H(p prev);
37 prod=trace(p prev'*Hp);
38

39 alpha=trace(r prev'*r prev)/prod;
40 v prev plus=v prev+alpha*p prev;
41

42 if (prod<=0 | | norm(v prev plus,'fro')>=delta)
43 t=give t(p prev,v prev,delta);
44 v next=v prev+t*p prev;
45 u=v next;
46 delta attained=true; %see remark 6.16
47 Hu=b-r prev+t*Hp;
48 break
49 else
50 v next=v prev plus;
51 end
52

53 r next=r prev-alpha*Hp;
54

55 if norm(r next,'fro')<=small

18

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

56 u=v next;
57 Hu=b-r next;
58 delta attained=false;
59 break
60 end
61

62 beta=trace(r next'*r next)/trace(r prev'*r prev);
63 p next=r next+beta*p prev;
64

65 v prev=v next;
66 r prev=r next;
67 p prev=p next;
68 end
69

70 if i==maxit
71 delta attained=false;
72 end
73 end

17. We implement a trust region solver. We decided to implement the Cauchy step method as well,
given by the function below (see cauchy step.m).

1 function [u,delta attained]=cauchy step(rad,g,H)
2 % Cauchy step method
3 % INPUT: rad: the current delta
4 % g: the current gradient
5 % H: the current hessian (not evaluate in a direction yet)
6 %
7 % OUTPUT: u: the minimizer of m(v)
8 % delta attained: boolean, true if norm(u)=rad, otherwise is false
9

10 prod=trace(g'*H(g));
11 norm g square=trace(g'*g);
12 norm g=sqrt(norm g square);
13 if prod>0
14 if norm g square/prod < rad/norm g
15 t=norm g square/prod;
16 delta attained=false;
17 else
18 t=rad/norm g;
19 delta attained=true;
20 end
21 else
22 t=rad/norm g;
23 delta attained=true;
24 end
25 u=-t*g;
26

27 end

In the function of the trust region method (see trust region.m below), the argument tCG is a
boolean indicating if we want to use the truncated CG method (true) or the Cauchy step method
(false).

We choose for ∆̄, ∆0 and ρ′ the values given in the homework, i.e. ∆̄ =
√
dK, ∆0 = ∆̄/8 and

ρ′ = 1/10.

19

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

1 function [M,grad,time,obj value]=trust region(maxtime,M0,X,pis,sigma,tCG)
2 %INPUT: maxtime for the loop, M0 starting point, X the data, pis the prob.
3 %, sigma, and a boolean tCG which is true if we want to use the truncated
4 %conjugate gradient method to find u, and which is false if we want to use
5 %the Cauchy step method to find u.
6 %OUTPUT M : last point of research
7 % grad : vector of the successive norms of gradient
8 % time : vector of successive times
9 % obj value : objective value of M

10 %Question17
11

12 %default values
13 [d,K]=size(M0);
14 max rad=sqrt(d*K);
15 rad 0=max rad/8;
16 rho2=1/10;
17

18 X=X';
19 Pi=pis';
20

21 M=M0;
22 rad=rad 0;
23 grad=[];
24 time=[];
25 f = @(P) log likelihood(P, X, sigma, Pi);
26 grad function = @(P) grad log likelihood(P, X, sigma, Pi);
27

28 tic
29 while toc<maxtime
30 time=[time toc];
31

32 g=grad function(M);
33 H= @(v) hessian log likelihood(M,v,X,sigma,Pi);
34

35 grad=[grad norm(g,'fro')];
36

37 m=@(v) f(M)+trace(g'*v)+1/2*trace(v'*H(v));
38

39 %find min of m by tCG or Cauchy step method:
40 if tCG==true
41 [u,~,delta attained]=truncatedCG(M,rad,g,H);
42 else
43 [u,delta attained]=cauchy step(rad,g,H);
44 end
45

46 M maybe=M+u;
47 rho=(f(M)-f(M maybe))/(f(M)-m(u));
48

49 %accept or reject:
50 if rho>rho2
51 M=M maybe;
52 end
53

54 %update the trust region radius:
55 if rho<1/4
56 rad=1/4*rad;
57 else
58 if rho>3/4 && delta attained
59 rad=min([2*rad max rad]);
60 end
61 end
62 end

20

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

Figure 7: Graph for question 18. We see the K cluster means in red and the data points in blue.

63

64 obj value=log likelihood(M, X, sigma, Pi);
65 end

18. Let’s run the trust region method with truncated CG on data-toy.mat, with the file question18.m
below.

1 clc
2 clear
3 close
4

5 load('data-toy.mat');
6 maxtime=4;
7 M0 = mean(X',2) .* ones(1,K) + 1e-4*rand(d,K);
8 tCG=true;
9

10 [M 1,grad,time,obj value]=trust region(maxtime,M0,X,pis,sigma,tCG);
11 display data means(X,M 1)

We obtain the graph on Figure [7].

The result is reasonable and good, as the cluster means lie in the middle of the clusters.

19. See question19.m below for the implementation. We decided to indicate the results obtain by the
trust-region method with Cauchy step as well. The last part of the code is for the next and last
question.

On Figure [8], you can see the norm of the gradient as a function of the iteration on the first graph,
and then as a function of time on the second graph. We observe that the trust-region method with

21

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

truncated conjugate gradient (TR with tCG) gives much better results in less iterations. It gives
better results also in 1.5 second, compared to the two other methods considered. The backtracking
line-search gradient descent (BLSGD) method gives a correct gradient, as its norm is at 10−5 at the
end of the execution of the program. It needs more iterations to attain it (about 400). Moreover,
this method is having better results than the trust region methods on the first second. But then it
does not get below 10−5, as does TR with tCG.

1 clc
2 clear
3 close
4

5 %% Load the data and initialize
6 load('data.mat');
7 maxtime=4;
8 M0 = mean(X',2) .* ones(1,K) + 1e-4*rand(d,K);
9

10 %% BLSGD
11 alpha0=1e-2;
12 rho=0.5; % in [0.5,0.8]
13 c=1e-4;
14

15 [M BLSGD,grad BLSGD,time BLSGD,obj value BLSGD]=BLSGD(maxtime,M0,X,pis,sigma,alpha0,rho,c);
16 I BLSGD=1:1:size(time BLSGD,2);
17

18 %% Trust Region with Cauchy step
19 tCG=false;
20 [M CS,grad CS,time CS,obj value CS]=trust region(maxtime,M0,X,pis,sigma,tCG);
21 I CS=1:1:size(time CS,2);
22

23 %% Trust Region with Truncated Conjugate Gradient
24 tCG=true;
25 [M tCG,grad tCG,time tCG,obj value tCG]=trust region(maxtime,M0,X,pis,sigma,tCG);
26 I tCG=1:1:size(time tCG,2);
27

28 %% Plot the norm of the gradient
29 figure
30 subplot(2,1,1)
31 semilogy(I BLSGD,grad BLSGD,I CS,grad CS,I tCG,grad tCG);
32 legend('BLSGD method','TR with CS','TR with tCG');
33 xlabel('Iteration'); ylabel('norm of the gradient');
34 grid on;
35 title('Comparing the norm of the gradient as a function of the iteration');
36

37 subplot(2,1,2)
38 semilogy(time BLSGD,grad BLSGD,time CS,grad CS,time tCG,grad tCG);
39 legend('BLSGD method','TR with CS','TR with tCG');
40 xlabel('Time'); ylabel('norm of the gradient');
41 grid on;
42 title('Comparing the norm of the gradient as a function of time');
43

44 X=X';
45 %% Question 20 : clusters obtained
46 figure
47 %to plot on the same figure with different colors, we'll simply rewrite the
48 %code of display data means(X,M):
49

50 scatter(X(1,:),X(2,:),'MarkerEdgeAlpha',0.1) %for transparency
51 hold on
52 plot(M BLSGD(1,:),M BLSGD(2,:),'*')

22

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

53 hold on
54 plot(M CS(1,:),M CS(2,:),'kx')
55 hold on
56 plot(M tCG(1,:),M tCG(2,:),'s')
57 hold on
58 title('Data points and K clusters means')
59 legend('Data','BLSGD','TR with CS','TR with tCG')

0 100 200 300 400 500 600 700

Iteration

10
-10

10
-5

10
0

10
5

n
o
rm

 o
f
th

e
 g

ra
d
ie

n
t

Comparing the norm of the gradient as a function of the iteration

BLSGD method

TR with CS

TR with tCG

0 0.5 1 1.5 2 2.5 3 3.5 4

Time

10
-10

10
-5

10
0

10
5

n
o
rm

 o
f
th

e
 g

ra
d
ie

n
t

Comparing the norm of the gradient as a function of time

BLSGD method

TR with CS

TR with tCG

Figure 8: Graphs for question 19. Here we compare the norms of the gradient, depending on the methods
chosen.

20. The results are given by question19.m, at the end of the code. We obtain the plot in Figure [9].
Note that we don’t use display data means.m because we want to display the means of the different
methods on the same plot. We simply adapt the code to our setting.

23

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

Figure 9: Graph for question 20. All cluster means coincide.

We notice that all methods give the same mean clusters, which seem correct. We obtain such results
after running a few times. Sometimes BLSGD cluster means are a bit off the other cluster means
given by the trust region methods, but the offset is very small, see Figure [10] below.

24

MATH-329 Homework 2 Anya-Aurore Mauron & Benôıt Müller October 4, 2023

Figure 10: Graph for question 20. See that BLSGD shifts a little bit from the two other methods.

To conclude, question 19 confirms that TR with tCG gives us better results in little time. The code
is efficient enough to give good results in less than two seconds. The homework has been successful:
we have implemented a code which, from the observations x1, ..., xN , retrieves the cluster means
µ1, ..., µK .

25

