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Part 1 : Projections to cones and stopping criteria in constrained optimization.
1.

The problem is equivalent to minimize ‖x − z‖ and the function x 7→ ‖x − z‖ is continuous, so it
has a minimum on every non-empty compact set (Weierstrass. For a recall of the argument, see
Part 2. Question 1.). By supposition, Q is non empty, so there exists a R > 0 such that B(z,R) ∩Q is
non empty and contain a certain q (where B(z,R) is the closed ball of radius R centered in z). Note that
now if x /∈ B(z,R), then ‖x − z‖ > R ≥ ‖q − z‖ and x is not the min because q is a better minimizer.
We can reduce the problem in Q̃ := B(z,R) ∩Q :

min
x∈Q
‖x− z‖ = min

x∈Q∩B(z,R)
‖x− z‖.

Since Q and B(z,R) are closed, B(z,R)∩Q is closed and bounded by R, it is compact. By construction
it is non-empty and as a result, it as a minimum : ProjQ(z) is non-empty.

2.

– Suppose ProjC(z) = {0}. Then 0 is a global and in particular local minimum of

min
x∈C

1
2‖x− z‖

2

Since f is diffenrentiable, we know by theorem 7.18 of the course that 0 is a stationary point and we
obtain

z = −(0− z) = −∇f(0) ∈ (T0C)◦ = C◦,

because we can show that actually T0C = C. Indeed, for every point x in C, we can take the curve
c(t) = tx ∈ C ∀t ≥ 0 (C is a cone), that converge to 0 when t→ 0+ and such that c′(0) = x, so x ∈ T0C
and C ⊂ T0C. Alternatively let’s consider a point x in T0C with associated sequence xn−0

tn
→ x. By

definition of a tangent cone, xn ∈ C, and by definition of a cone, xn/tn ∈ C. As a result we have that
the sequence must converge inside C because it is closed. We have the second inclusion C ⊃ T0C and
conclude that equality holds.

– Suppose z ∈ C◦, then for all non-null point x in C,

‖x− z‖2 = ‖x‖2︸︷︷︸
>0

−2 〈x, z〉︸ ︷︷ ︸
≤0

+‖z‖2 > ‖z‖2 = ‖0− z‖2
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and 0 is a strictly better minimizer than any other point x. We conclude that

ProjC(z) = arg min
z∈C

1
2‖x− z‖

2 = {0}.

These two parts prove the result.

3.

Using question 2, since Tx∗S is a non-empty closed cone

ProjTx∗S(−∇f(x∗)) = {0} ⇐⇒ −∇f(x∗) ∈ (Tx∗)◦ = Nx∗ ,

and that is x∗ being stationary by definition.

4.

a) If v ∈ ProjC(z), then it is by definition a minimizer of minx∈C 1/2‖x− z‖2 and by theorem 7.18, a
stationary point because x 7→ 1/2‖x− z‖2 is differentiable with gradient v− z (evaluated in v). By
definition, we have −(v − z) ∈ NvC, i.e. for all d ∈ TvC, 〈d, z − v〉 ≤ 0. But clearly {v,−v} ∈ TvC
because of the tangent curves c1,2(t) = v± tv = (1± t)v which are in C as soon as t < 1. So taking
both cases d = ±v,

0 ≥ 〈±v, z − v〉 = ±〈v, z − v〉

and 〈v, z − v〉 must be 0.

b) For an arbitrary projection v, we have

‖v‖2 = ‖(v − z) + z‖2 = ‖v − z‖2 + 2 〈v − z, z〉︸ ︷︷ ︸
=0 by a)

+‖z‖2 = min
x∈C
‖x− z‖2 + ‖z‖2

doesn’t depend on v.

5.

We take f = Id and S = R+. We have −∇f = −1 and

TxS =
{
R+ if x = 0
R if x > 0

We get

ProjT0(−∇f(0)) = ProjR+(−1) = 0
ProjTx

(−∇f(x)) = ProjR(−1) = −1 ∀x > 0.

Its norm is clearly not continuous in 0.
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6.

We compute an explicit form of the projection.
First of all, the set S is one dimensional and can be described as h−1({0}) with the single equality

constraint h(z) = ‖z‖2 − 1. The tangent cone is the tangent line to the circle , because all associ-
ated tangent sequences follow the same line. More precisely, this is follow from theorem 8.14 about
linear independence constraint qualification (LICQ), since here we have only one constraint function,
the constraint gradient make a trivial independent collection. Thus a qualification condition holds and
TzS = FzS = (∇h(z))⊥ = (2z)⊥.

A non-null perpendicular vector of z = (x, y) ∈ S is (y,−x) =: i(z), and the the tangent cone is then
Ri(z). We know by Gram-Schmidt that the projection of a vector a to a vector b is just ā = 〈a,b〉

‖b‖2 b. In
our case, ‖z‖ = 1 = ‖i(z)‖ and

ProjTz
(−∇f(z)) = ProjRi(z)(−∇f(z)) = −〈∇f(z), i(z)〉

‖i(z)‖2 i(z) = −〈∇f(z), i(z)〉i(z)

and its norm is q(z) = |〈∇f(z), i(z)〉|. Since i , ∇f , and the scalar product are all continuous, q is
continuous.

7.

a) The fact that LICQ holds, means that the jacobian J(x) := Dh(x) has always full row rank p in S.
By theorem 8.14, we have

TxS = FxS = {y ∈ Rn|〈y,∇hi(x)〉 = 0 ∀i = 1, . . . , p} = ker(J(x)).

We will need later to compute projection on this null space, so we use a matrix representation for
it, using the singular decomposition and the pseudo inverse.
We recall that all matrix A ∈ Rm×n can be written A = PDQ where P ∈ Rm×m and Q ∈ Rn×n
are orthogonal, and D ∈ Rm×n is diagonal. The matrix D+ is defined with (D+)ij = (Dij)−1 when
(D+)ij is non null, and 0 otherwise. The pseudo inverse matrix A+ is then PD+Q and has the
properties that AA+A = A and A+A is symetric. Moreover when A has full row rank, the pseudo
inverse A+ = A>(AA>)−1.
Now we proove that ker(A) = im(I −A+A). Indeed, if x is in the null space, then it can be written

x = x−A+0 = x−A+Ax = (I −A+A)x

and x ∈ im(I −A+A).
Alternatively, if y = (I −A+A)x, then

A(I −A+A)x = (A−AA+A)x = (A−A)x = 0

and y ∈ im(I −A+A).
Finally we get TxS = im(I −A+A).

b) Thanks to a), we can rewrite the minimisation problem ProjTxS(z) as follow:

min
v∈TxS

‖v − z‖ = min
v∈im(I−A+A)

‖v − z‖ = min
y∈Rn

‖(I − J(x)+J(x))y − z‖

By the last squares, we know that the term v = (I − J(x)+J(x))y is the same for all minimizers y,
and a solution is given by the equation

(I − J(x)+J(x))>(I − J(x)+J(x))y = (I − J(x)+J(x))>z (1)
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But now we can show that actually

(I − J(x)+J(x))>(I − J(x)+J(x)) = (I − J(x)+J(x))

Indeed, I − J(x)+J(x) is symetric, and we have

(I − J(x)+J(x))>(I − J(x)+J(x)) = (I − J(x)+J(x))2 = I − 2J(x)+J(x) + J(x)+J(x)J(x)+J(x)
= I − 2J(x)+J(x) + J(x)+J(x) = I − J(x)+J(x).

As a result, the equation (1) read actually v = (I − J(x)+J(x))y = (I − J(x)+J(x))z and we have
a direct explicit expression of the projection:

ProjTxS(z) = (I − J(x)+J(x))z

c) Since J and∇f are continuous, and looking at the expression−(I−J(x)+J(x))∇f(x), ProjTxS(−∇f(x))
is continuous in x if the map A 7→ A+ is continuous too. It is not the case in general, but in our
case A = J(x) has always full row rank and a linear algebra theorem tell us it can be written
A+ = A>(AA>)−1, which is continuous in A(matrix sum, product, transpose, inverse are continu-
ous). As the result the projection itself is actually continuous and

ProjTxS(z) = −(I − J(x)>(J(x)J(x)>)−1J(x))∇f(x)

with norm of course continuous too.
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Part 2 : A Frank–Wolfe algorithm
1.

The problem (2) always has a solution. First, S is non empty. Second, define g : E → R, by g(x) = 〈w, x〉.
The function g is continuous since the scalar product is. Then we know there exists an infimum of the
function g, in other words there exists a converging sequence (xn)∞n=1 ⊂ S such that

lim
n→∞

〈w, xn〉 = inf
x∈S
〈w, x〉.

As S is compact, (xn)∞n=1 must converge in S. Therefore the sequence does not only attain the infimum,
but the mininum. To conclude, the problem (2) always has a solution.

2.

By taking f : R2 → R, defined by f(x, y) = x (f is continuously differentiable, is convex and∇f is lipschitz
continuous), we have w = ∇f(x, y) = (1, 0)> for all (x, y) ∈ R2. Take S = {(x, y) ∈ R2 : max(|x|, |y|) ≤ 1}
(the square in R2). This set is indeed convex and compact, since it is bounded and closed.

We have, for all (x, y) in R2:
〈w, (x, y)〉 = x,

therefore problem (2) can be rewritten as
min

(x,y)∈S
x.

Clearly the solutions are given by {(−1, y) : |y| ≤ 1}. The problem admits more than one solution.

3.

It is important because the convexity of S assures xk+1 = (1−ηk)xk+ηks(xk) to be in S only if ηk ∈ [0, 1],
as we know that xk and s(xk) are in S by construction.

4.

(B1): as f : E → R is continuously differentiable and ∇f is L-lipschitz continuous (see theorem 3.2 in
the notes, with u = xk+1 − xk and x = xk).
(B2): by definition of

xk+1 = xk − ηkxk + ηks(xk) ⇐⇒ xk+1 − xk = ηk(s(xk)− xk)

Therefore:
‖xk+1 − xk‖2 ≤ |ηk|2 ‖s(xk)− xk‖2 ≤ |ηk|2d2

S .

The last inequality is implied by definition of the diameter of S dS , as

‖s(xk)− xk‖ ≤ max
x,y∈S

‖x− y‖ = dS .

(B3): by definition of s(xk) = argminx∈∆n〈∇f(xk), x〉, we have

〈∇f(xk), s(xk)〉 ≤ 〈∇f(xk), x∗〉

which is equivalent to
〈∇f(xk), s(xk)− xk〉 ≤ 〈∇f(xk), x∗ − xk〉
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by linearity of the scalar product. As ηk is in between zero and one, we have the expected inequality as:

∇f(xk)>(s(xk)− xk) ≤ ∇f(xk)>(x∗ − xk).

(B4): by theorem 4.21, as f : E → R is differentiable on a euclidean space E and convex, we have :

∀x, y ∈ E : f(y) ≥ f(x) + 〈∇f(x), y − x〉.

In particular for x = xk and y = x∗ :

〈∇f(xk), x∗ − xk〉 ≤ f(x∗)− f(xk) ⇐⇒ ∇f(xk)>(x∗ − xk) ≤ f(x∗)− f(xk)

which is the expected inequality.

5.

We have:
f(x1)− f(x∗) ≤ f(x1)− f(x0)−

(
f(x∗)− f(x0)

)
.

By using the previous exercise on f(x1)− f(x0):

f(x1)− f(x∗) ≤ η0(f(x∗)− f(x0)) + L

2 η
2
0d

2
S −

(
f(x∗)− f(x0)

)
= L

2 d
2
S ,

the last equality being given as η0 = 1.

6.

We show this result by induction. By 5., the result is true for k = 1. Now for k ≥ 1:

f(xk+1)− f(x∗) = f(xk+1)− f(xk)−
(
f(x∗)− f(xk)

)
By using 4. on f(xk+1)− f(xk):

f(xk+1)− f(x∗) ≤ ηk
(
f(x∗)− f(xk)

)
+ L

2 η
2
kd

2
S −

(
f(x∗)− f(xk)

)
= (ηk − 1)

(
f(x∗)− f(xk)

)
+ L

2 η
2
kd

2
S

Also, we know that by definition of ηk:

ηk − 1 = 2
k + 2 − 1 = 2− (k + 2)

k + 2 = −k
k + 2 .

Therefore:

f(xk+1)−f(x∗) ≤ k

k + 2
(
f(xk)−f(x∗)

)
+L

2 η
2
kd

2
S ≤

k

k + 2
2Ld2

S

k + 2+L

2
( 2
k + 2

)2
d2
S =

( 2k
(k + 2)2 + 2

(k + 2)2

)
Ld2

S ,

where we used the induction hypothesis on the second inequality.
Then, we have for all k ≥ 1:

6 ≤ 8 ⇐⇒ 2k2 + 6k + 2k + 6 ≤ 2k2 + 8k + 8 ⇐⇒ (2k + 2)(k + 3) ≤ 2(k + 2)2 ⇐⇒ 2k + 2
(k + 2)2 ≤

2
k + 3 .

Hence we can conclude:

f(xk+1)− f(x∗) ≤ 2k + 2
(k + 2)2Ld

2
S ≤

2
k + 3Ld

2
S = 2

(k + 1) + 2Ld
2
S

which is the expected result.
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7.

∆n is convex by Corollary 9.22 of the course. Indeed, define:
• gi : E → R for i = 1, ..., n by gi(~x) = −xi. They are convex as they are linear.

• h : E → R by h(~x) =
∑n
i=1 xi − 1 = ~1>~x− 1 which is affine.

Then the set ∆n = {~x ∈ E : h(~x) = 0, gi(~x) ≤ 0∀i = 1, ..., n} is convex.
∆n is compact by Heine-Borel theorem, as ∆n ⊂ E an euclidean space. ∆n is compact if and only

if it is closed and bounded.
It is clearly bounded as for x ∈ ∆n, then all components of x are in between 0 and 1.
It is closed sequentially (therefore closed). Take (xk)k≥1 ⊂ ∆n such that limk→∞ xk = x for x ∈ E .

As gi are continuous for all i = 1, ..., n we have gi(x) = limk→∞ gi(xk) ≤ 0. In the same way, as h is
continuous, we have h(x) = limk→∞ h(xk) = 0. Therefore x belongs to ∆n and ∆n is closed.

∆n is non-empty, as ~x = (1, 0, ...0)> ∈ ∆n.

8.

We look for
min
x∈∆n

〈w, x〉 = min
1≤i≤n

wi

as xi ≥ 0 for all i = 1, ..., n, and that x gives weight for each component of w. We can show it more
precisely by contradiction. Suppose there exists x̂ ∈ ∆n such that

〈w, x̂〉 = min
x∈∆n

〈w, x〉 < min
1≤i≤n

wi

Let m = argmin1≤i≤n wi. We have, by definition of the argmin, wm ≤ wi∀i = 1, ..., n. Then we can
rewrite the strict inequality above as:

n∑
i=1

wix̂i < wm

and we have the contradiction as

wm

n∑
i=1

x̂i ≤
n∑
i=1

wix̂i < wm

which would imply
n∑
i=1

x̂i < 1.

To attain the smallest value, we can take (xi)ni=1 = δim, with m = argmin1≤i≤n wi.

9.

With S = ∆n, by 8., it suffices to solve min1≤i≤n wi The computational complexity of computing my
solution is O(n), as the computer needs to go through all components of w once. To show this, I
implemented min complexity.m, which measures the time that the computer needs in order to take the
index of the minimum component of a vector. In the code below, we take a random vector from which
we vary the size. The length of the vector is multiplied by two at each loop. We obtain the plot below,
which is in loglog. We observe that the slope of the time is similar to the slope of the linear function,
therefore the function min runs in O(n).

Note that we run the min function 15 times in order to calculate a mean of the time the function
takes (see lines 12 to 18 in the code below). The number of times is arbitrary.
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Figure 1: Graph of exercise 9

1 clc
2 clear
3 close
4

5 N max=25;
6 N=1:1:N max;
7 time=zeros(size(N,1),1);
8

9 for n=N
10 m=2ˆn;
11 t=0;
12 for j=1:15
13 x=randn(m,1);
14 tic
15 [~,I]=min(x);
16 t=t+toc;
17 end
18 time(n)=t/15;
19 end
20 %% plot
21 loglog(2.ˆN,time,'x',2.ˆN,1e-5*sqrt(2.ˆN),2.ˆN,1e-7*(2.ˆN))
22 legend('Time','$\sqrt{2ˆN}$','$2ˆN$','Interpreter','latex')
23 title('Complexity of the min function','Interpreter','latex');
24 xlabel('$2ˆN$','Interpreter','latex');
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10.

We have that f(x) is continuous by the continuity of the norm, the square and the matrix multiplication.
Since ∆n is convex, compact and non-empty, by the same reasoning as in 1., this problem admits a
solution. Indeed, we can again define a sequence (xn)n≥1 ⊂ ∆n such that

lim
n→∞

f(xn) = inf
x∈∆n

f(x).

As ∆n is compact, the sequence (xn)n≥1 must converge in ∆n, therefore the minimum is attained in ∆n.
Moreover, the solution might not be unique. Suppose A is the null matrix and b is the null vector.

Then all x ∈ ∆n are solutions of the minimization problem as Ax− b = 0 for all x ∈ ∆n.

11.

We have :
f(x) = 1/2(〈Ax,Ax〉 − 2〈Ax, b〉+ 〈b, b〉)

by properties of the scalar product, in particular the symmetry of it. Then take x, v ∈ ∆n, and t > 0.
Let’s calculate:

f(x+ tv)− f(x) = 1/2
(
〈A(x+ tv), A(x+ tv)〉 − 2〈A(x+ tv), b〉+ 〈b, b〉 − 〈Ax,Ax〉+ 2〈Ax, b〉 − 〈b, b〉

)
= 1/2

(
〈Ax,Ax〉+ 2t〈Ax,Av〉+ t2〈Av,Av〉 − 2〈Ax, b〉 − 2t〈Av, b〉 − 〈Ax,Ax〉+ 2〈Ax, b〉

)
= 1/2

(
2t〈Ax,Av〉+ t2〈Av,Av〉 − 2t〈Av, b〉

)
= t〈Ax,Av〉+ 1

2 t
2〈Av,Av〉 − t〈Av, b〉

Therefore:

Df(x)[v] = lim
t→0

f(x+ tv)− f(x)
t

= lim
t→0
〈Ax,Av〉+ 1

2 t〈Av,Av〉 − 〈Av, b〉

= 〈Ax,Av〉 − 〈b, Av〉 = 〈Ax− b, Av〉 = 〈A>(Ax− b), v〉

by symmetry and linearity of the scalar product. To conclude, since Df(x)[v] = 〈∇f(x), v〉, we have

∇f(x) = A>(Ax− b).

12.

We have g : [0, 1]→ R. First, let’s rewrite g(η), for all x and y in ∆n:

g(η) = 1
2 ‖A[(1− η)x+ ηy]− b‖2 = 1

2 ‖Ax− b+ ηA(y − x)‖2

= 1
2 〈ηA(y − x) +Ax− b, ηA(y − x) +Ax− b〉

= 1
2
(
η2〈A(y − x), A(y − x)〉+ 2η〈A(y − x), Ax− b〉+ 〈Ax− b, Ax− b〉

)
.

In short:
g(η) = 1/2

[
η2 ‖A(y − x)‖2 + 2η〈A(y − x), Ax− b〉+ ‖Ax− b‖2

]
.

Therefore, g(η) is a quadratic function of η. Moreover, as 1
2 ‖A(y − x)‖2 ≥ 0, it is convex. Finding the

minimum of g(η) corresponds to find the minimum of f on the segment defined by x and y, which is

9
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what we are looking for. The minimum is either on the boundaries of [0, 1] or in the interior. If it was
on the interior, the minimum of g would be given by the zero of the gradient of g:

δηg(η) = η〈A(y − x), A(y − x)〉+ 〈A(y − x), Ax− b〉.

The optimal value would be given by :

η̄ = −〈A(y − x), Ax− b〉
‖A(y − x)‖2

If the minimum was on the boundary, the optimal value would be either zero or one.
The minimum is attained at η̄, at zero, or at one. We have the following three cases:

• η̄ ≤ 0: then by representing the quadratic function with positive coefficient in front of the quadratic
term, we can easily see that the minimum is attained at zero. See below an illustration of a quadratic
function with positive coefficient in front of the square term. We observe that η̄ is equal to −2, and
that the minimum is indeed attained at zero in the interval [0, 1].

−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y
(x+ 2)2

• 0 < η̄ < 1: the value η̄ is in the interior of [0, 1]. Therefore the minimum is attained at η̄. See an
illustration below, with η̄ = 1/2.
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−4 −3 −2 −1 1 2 3 4

−6

−4

−2

2

4

6

x

y
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• η̄ ≥ 1: then by representing the quadratic function with positive coefficient in front of the quadratic
term, we can easily see that the minimum is attained at one. See below for illustration.

−4 −3 −2 −1 1 2 3 4

−4

−2

2

4

x

y
(x− 2)2
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13.

Here is the algorithm:

Algorithm 1 Frank-Wolfe

Input: S = ∆n, f(x) = 1
2 ‖Ax− b‖

2, x0 = (1, 0, ...0) ∈ Rn
for k=0,1,... do

Compute j = argmini=1,...,n∇f(xk)
(s(xk))ni=1 = δij
ηk = max(0,min(− 〈A(s(xk)−xk),Axk−b〉

‖A(s(xk)−xk)‖2 , 1))
xk+1 = (1− ηk)xk + ηks(xk)

end for

14.

We implement the function FrankWolfe.m below:

1 function [Gap,k,x k]=FrankWolfe(maxit,tol,A,b,n)
2 % run the Frank-Wolfe algorithm for a function f(x)=1/2||Ax-b | |ˆ2 , x in
3 % Rˆn. It returns a vector Gap (the F.-W. gap at each iteration), the
4 % maximum of iteration k the algorithm has reached, and the solution x k
5 % obtained at the end of the algorithm.
6

7 f=@(x) 0.5*dot(A*x-b,A*x-b);
8 grad=@(x) A'*(A*x-b);
9 x k=zeros(n,1);

10 x k(1)=1;
11 Gap=zeros(maxit,1);
12

13 for k=1:maxit
14 grad k=grad(x k);
15 [~,index]=min(grad k);
16 sx k=zeros(n,1);
17 sx k(index)=1;
18 nu k=-dot(A*(sx k-x k),A*x k-b)/dot(A*(sx k-x k),A*(sx k-x k));
19 nu k=max(0,min(nu k,1));
20 x k=(1-nu k)*x k+nu k*sx k;
21 %Frank-Wolfe gap:
22 g k=dot(grad k,x k-sx k);
23 Gap(k)=g k;
24 if g k<tol
25 break
26 end
27 end
28 end

12
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Figure 2: Graph of exercise 15

15.

We implement ex15.m which runs the Frank-Wolfe algorithm on the given data.

1 clc
2 clear
3 close
4 % exercise 15.
5

6 load data.mat
7 maxit=3000;
8 tol=1e-3;
9

10 [Gap,k,~]=FrankWolfe(maxit,tol,A,b,n);
11

12 semilogy(1:1:k,Gap(1:k))
13 title('Exercise 15','Interpreter','latex')
14 xlabel('Number of iteration','Interpreter','latex');
15 ylabel('Frank-Wolfe gap','Interpreter','latex');
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Figure 3: Graph of exercise 16

16.

We implement ex16.m, see below. We obtain the plot given by the function plot data.m.

1 clc
2 clear
3 close
4 % exercise 16.
5

6 load data.mat
7 maxit=3000;
8 tol=1e-3;
9

10 %solution given by FrankWolfe:
11 [~,~,sol FW]=FrankWolfe(maxit,tol,A,b,n);
12 nnz(sol FW)
13

14 %solution given by solving the linear system:
15 sol lin=A\b;
16 nnz(sol lin)
17

18

19 plot data(x,sol FW,sol lin)

We observe on the graph that the solution given by the backslash command gives worse result then
the solution given by the Frank-Wolfe method. Indeed, observe the yellow branches going down as no
blue branches have this behaviour. Notice the red branches being closer to the blue branches.

Also using the nnz function, which gives the number of non-zero elements in a vector, we note that
the solution given by Frank-Wolfe has 34 of them, and the one given by solving the linear system has 40

14
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of non-zero entries (in fact x has 8 non-zeros entries). So the Frank-Wolfe solution is more sparse than
the other one.

To conclude, the Frank-Wolfe algorithm gives a better solution than the one given by the backslash
command.

15
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Part 3 : KKT conditions and constraint qualifications.
In this part, we set F = (f1, . . . , fN )> and 1 = (1, . . . , 1)> ∈ RN , giving the descriptions f = ‖F‖∞ and
S = {(x, y) ∈ Rn+1|F (x) ≤ y1}.

1.

For all (x, y) ∈ S, F (x) ≤ y1 and so f(x) ≤ y. As a result

min f ≤ min
(x,y)∈S

y

Furthermore, for all minimizer x of f , we have trivially that (x, f(x)) ∈ S because F (x) ≤ ‖F (x)‖∞1, so

min
(x,y)∈S

y ≤ f(x) = min f.

the two inequalities give us the result.

2.

We set the function g(x, y) = F (x)− y1, with gradients ∇gi(x, y) =
(
∇fi(x)
−1

)
and ∇xy(y) =

(
(0)
−1

)
.

The KKT conditions are

−
(

(0)
1

)
=
∑N
i=1 λi

(
∇fi(x)
−1

)
λi(fi(x)− y) = 0 ∀i ∈ {1, . . . , N}

i.e.


∑N
i=1 λi∇fi(x) = 0∑N
i=1 λi = 1

λi(fi(x)− y) = 0 ∀i ∈ {1, . . . , N}

For some λi ≥ 0.

3.

We choose


f1(x) = 2x1

f2(x) = 2x2

f3(x) = x1 + x2

, and we get


∇g1(x, f(x)) = (2, (0),−1))>

∇g2(x, f(x)) = (0, 2, (0),−1))>

∇g3(x, f(x)) = (1, 1, (0),−1))>
.

Now ∇g1 +∇g2 − 2∇f3 = 0 everywhere, and in particular in the active points (x, f(x)), like ((0),0) for
example.

4.

To have MFCQ, since here we don’t have the equalities constraints, we just have to look to the inequality
constraint gradients.
Let z = (x, y) ∈ S and I(x, y) = {j ∈ {1, . . . , N}|fi(x) = y}. Then for all i ∈ I(z), ∇gi(z) =
(∇fi(x)>,−1)> and ((0), 1)∇gi(z) = −1 < 0. The MFCQ holds thanks to the direction ((0), 1).

5.

By question 4., we have a constraint qualification that holds, MFCQ. The KKT Theorem tell us that
(x∗, y∗) is a KKT point. Looking at question 2, we see that it means that 0 is in the convex envelop of the
active gradients ∇fi(x∗), with the λ’s being the coordinates of 0 for such a convex linear combination. In
particular they are linearly dependent and the Lagrange multipliers might not be unique. More precisely,
continuously infinitely possible multipliers can exist.
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