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An exemple of sentence with a reference to

1 Gaussian Mixture Models

1.1 A Riemannian geometry for Pd and Rd × Pd

1. Let’s rewrite l:

l(µ,Σ) = −
n∑
i=1

log(pd(µ,Σ;xi))

= −
n∑
i=1

log

((
det(Σ)(2π)d

)−1/2
exp

(
− 1

2
(xi − µ)⊤Σ−1(xi − µ)

))
= −

n∑
i=1

(
− 1

2
log

(
det(Σ)(2π)d

)
− 1

2
(xi − µ)⊤Σ−1(xi − µ)

)
=
n

2
log

(
det(Σ)(2π)d

)
+

1

2

n∑
i=1

(xi − µ)⊤Σ−1(xi − µ)

With respect to µ, l is ∥Σ∥2-strongly convex, so let’s look for stationary points. With respect to
Frobenius scalar product,

∇µ̂l(µ̂,Σ) =
1

2

n∑
i=1

Σ−1(µ̂− xi) =
1

2
Σ−1

n∑
i=1

(ˆ̂µ− xi) =
1

2
Σ−1(nµ̂−

n∑
i=1

xi) = 0

if and only if µ̂ = 1
n

∑n
i=1 xi, and notice that actually this minimizer is unique and doesn’t depends

on Σ.
To find an optimal Σ, lets actually look for A = Σ−1 since the expression simplifies to

n

2
log

(
det(A)−1(2π)d

)
+
1

2

n∑
i=1

(xi−µ)⊤A(xi−µ) = −n
2
log

(
det(A)

)
+
dn

2
log(2π)+

1

2

n∑
i=1

(xi−µ)⊤A(xi−µ)
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Since it is known that A 7→ −det(A)1/d is convex over Pd [ trouver une référence ], and x 7→
− log(−x) is strictly convex and increasing, −d log(det(A)1/d) = − log(det(A)) is strictly convex, and
sumed with a linear term, l is convex in A. Lets look at stationary points. We can derive a formula
of the derivative of det from the Laplace expansion det(A) =

∑n
k=1Aik cof(A)ik:

∂Aij
det(A) = cof(A)ij ,

so ∇det = cof and by chain rule with log,

∇(log ◦ det)(A) = det(A)−1 cof(A) = A−⊤ = A−1.

For the linear term, wee see that for any vector y,

∇Aij (y
⊤Ay) = ∇Aij (

n∑
i,j=1

yiAijyj) = yiyj = (yy⊤)ij ,

so at the end we get

∇A

(
−n

2
log

(
det(A)

)
+
dn

2
log(2π)+

1

2

n∑
i=1

(xi−µ)⊤A(xi−µ)
)

= −n
2
A−1+

1

2

n∑
i=1

(xi−µ)(xi−µ)⊤ = 0.

If
∑n
i=1(xi − µ)(xi − µ)⊤ is invertible (never the case when n < d), then the unique optimal is

Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)⊤.

2. The embedded manifold M is an open subset of its embedding euclidean space E , so it is locally
identifiable to E , and all directions are in the tangent space, so TxM = E = Rd × Symd.

3. Let f(Θ) = log pd(Θ;x) so we have

f(µ,Σ) = log pd(µ,Σ;x) = −1

2
log det(Σ)− d

2
log(2 ∗ π)− 1

2
(µ− x)⊤Σ−1(µ− x)

and let (Θ, Θ̇) ∈ TM. We first compute

⟨∇2f(Θ)[Θ̇], Θ̇⟩ = d2

dt2
f(Θ + tΘ̇)|t=0

=
d2

dt2
f(µ+ tµ̇,Σ+ tΣ̇)|t=0
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and will generalize for two different directions Θ after. We use the formulas for the derivatives of
log ◦ log and the matrix inversion found in Question 1, and the product derivative formula:

f(µ+ tµ̇,Σ(t)) = log(det(Σ + tΣ̇)) + d log(2π) + (µ(t)− x)⊤Σ(t)−1(µ(t)− x)
d/dt7−−−→ ⟨Σ(t)−1, Σ̇⟩+ µ̇⊤Σ(t)−1(µ(t)− x) + (µ(t)− x)⊤Σ(t)−1Σ̇Σ(t)−1(µ(t)− x) + (µ(t)− x)⊤Σ(t)−1µ̇
d/dt7−−−→ ⟨Σ(t)−1Σ̇Σ(t)−1, Σ̇⟩

+µ̇⊤ d

dt

(
Σ(t)−1

)
(µ(t)− x) + µ̇⊤Σ(t)−1µ̇

+µ̇⊤Σ(t)−1Σ̇Σ(t)−1(µ(t)− x) + (µ(t)− x)⊤
d

dt

(
Σ(t)−1Σ̇Σ(t)−1

)
(µ(t)− x)

+(µ(t)− x)⊤Σ(t)−1Σ̇Σ(t)−1µ̇

+µ̇⊤Σ(t)−1µ̇
t=07−−→ ⟨Σ−1Σ̇Σ−1, Σ̇⟩

+µ̇⊤ d

dt

(
Σ(t)−1

)
|t=0(µ− x) + µ̇⊤Σ−1µ̇

+µ̇⊤Σ−1Σ̇Σ−1(µ− x) + (µ− x)⊤
d

dt

(
Σ(t)−1Σ̇Σ(t)−1

)
|t=0(µ− x) + (µ− x)⊤Σ−1Σ̇Σ−1µ̇

+µ̇⊤Σ−1µ̇

Ex7−→ ⟨Σ−1Σ̇Σ−1, Σ̇⟩+ 2µ̇⊤Σ−1µ̇+ Ex((µ− x)⊤
d

dt

(
Σ(t)−1Σ̇Σ(t)−1

)
|t=0(µ− x))

and we can rewrite

⟨Σ−1Σ̇Σ−1, Σ̇⟩+ 2µ̇⊤Σ−1µ̇ = Tr(Σ−1Σ̇Σ−1Σ̇) + 2µ̇⊤Σ−1µ̇.

Both formulas of the Fisher-Rao information metric are clearly symmetric bilinear maps, and using
polarization identity, they are entirely determined by the quadratic map associated, which have been
proven to be equal, so the whole bilinear maps are actually equal.

4. We start by showing that ⟨·, ·⟩FR is a metric on M = Rd × Pd, and to do so, we will show that
for any choice of Θ = (µ,Σ) ∈ M, ⟨·, ·⟩Θ is an inner product on TθM.
We start by showing the symmetry. Let Θ̇1 = (µ̇1, Σ̇1), Θ̇2 = (µ̇2, Σ̇2) ∈ TΘM. We have :

⟨Θ̇1, Θ̇2⟩Θ = Tr(Σ−1Σ̇1Σ
−1Σ̇2) + 2µ̇T1 Σ

−1µ̇2

= Tr(Σ−1Σ̇2Σ
−1Σ̇1) + 2µ̇T2 Σ

−1µ̇1

= ⟨Θ̇2, Θ̇1⟩Θ

where we used the permutation property of the trace since we are only working with symmetric
matrices, and the fact that Σ ∈ Pd, so Σ−1 is symmetric.
For the bi-linearity, we have ∀a, b ∈ R, and Θ̇3 = (µ̇3, Σ̇3) ∈ TΘM :

⟨aΘ̇1 + bΘ̇2, Θ̇3⟩Θ = Tr(Σ−1(aΣ̇1 + bΣ̇2)Σ
−1Σ̇3) + 2(aµ̇1 + bµ̇2)

TΣ−1µ̇3

= Tr(aΣ−1Σ̇1Σ
−1Σ̇3 + bΣ−1Σ̇2Σ

−1Σ̇3) + 2aµ̇T1 Σ
−1µ̇3 + 2bµ̇T2 Σ

−1µ̇3

= aTr(Σ−1Σ̇1Σ
−1Σ̇3) + bTr(Σ−1Σ̇2Σ

−1Σ̇3) + 2aµ̇T1 Σ
−1µ̇3 + 2bµ̇T2 Σ

−1µ̇3

= a(Tr(Σ−1Σ̇1Σ
−1Σ̇3) + 2µ̇T1 Σ

−1µ̇3) + b(Tr(Σ−1Σ̇2Σ
−1Σ̇3) + 2µ̇T2 Σ

−1µ̇3)

= a⟨Θ̇1, Θ̇3⟩Θ + b⟨Θ̇2, Θ̇3⟩Θ

3
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where we used the linearity of the trace. Moreover, the linearity in the second argument follows by
symmetry.
Now, for the positive-definiteness, if Θ̇ = (µ̇, Σ̇) ∈ TΘM is non-zero, then observe that :

⟨Θ̇, Θ̇⟩Θ = Tr(Σ−1Σ̇Σ−1Σ̇) + 2µ̇TΣ−1µ̇

= Tr((Σ−1Σ̇)TΣ−1Σ̇) + 2µ̇TΣ−1µ̇

Now, since we already now from previous exercise sessions that the trace defines a standard inner
product on matrix spaces, it follows that Tr((Σ−1Σ̇)TΣ−1Σ̇) is non-negative, and the same holds for
µ̇TΣ−1µ̇, since Σ ∈ Pd, and so is Σ−1. Now, since Θ̇ is chosen to be non-zero, it follows, that either
µ̇ or Σ̇ is non-zero, and therefore, one of the term in the sum has to be strictly positive, therefore,
⟨Θ̇, Θ̇⟩Θ > 0 as wanted.
We now show that the FR metric on M is a riemannian metric. To do so, consider V,W two smooth
vector fields on M and consider the map F : M → R defined by F (Θ) = ⟨V (Θ),W (Θ)⟩Θ, for
Θ = (µ,Σ) ∈ M. Since both V and W are smooth vector fields on M, by proposition 3.45 in the
textbook, there exists smooth vector fields V̄ , W̄ defined on open neighborhoods of M, say U1 and
U2 respectively, such that V = V̄ |M and W = W̄ |M. Now observe that U = U1 ∩U2 ⊇ M is an open
neighborhood of M in E . We now define the map F̄ : U → R defined by F̄ (Θ) = ⟨V̄ (Θ), W̄ (Θ)⟩Θ, for
Θ = (µ,Σ) ∈ U and claim that this is a smooth extension of F on an open neighborhood U of M in
E .
Indeed, we start by decomposing V̄ = (µ̇V̄ , Σ̇V̄ ), so that V̄ (Θ) = (µ̇V̄ (Θ), Σ̇V̄ (Θ)) ∈ TΘM,∀Θ ∈ M.
Since V̄ is smooth, it follows that both µ̇V̄ and Σ̇V̄ are smooth maps. We analogously decompose
W̄ = (µ̇W̄ , Σ̇W̄ ), and see that both components are smooth maps. Then, F̄ (Θ) = ⟨V̄ (Θ), W̄ (Θ)⟩Θ =
Tr(Σ−1Σ̇V̄ (Θ)Σ−1Σ̇W̄ (Θ)) + 2µ̇V̄ (Θ)TΣ−1µ̇W̄ (Θ).
Observe first that the map Θ 7→ Σ−1 is smooth since it is the composition of the projection map
Θ 7→ Σ with the inverse map Σ 7→ Σ−1, both maps being smooth, and smoothness being preserved by
composition. Indeed, the first map is clearly smooth, and for the second, it will be shown in details
in question 6 why it is smooth.
Now, from the section 4.7 in the texbook, by the product rule for differentials, the product of two
maps from a manifold to matrix spaces such that the matrix multiplication is always well-defined, is
smooth too. It follows that Θ 7→ Σ−1Σ̇V̄ (Θ)Σ−1Σ̇W̄ (Θ) is smooth, as well as Θ 7→ µ̇V̄ (Θ)TΣ−1µ̇W̄ (Θ).
Moreover, the trace map is also smooth (it follows from the fact that the trace map is polynomial in
the entries of the matrix given in input, and so if we consider its extension to a linear space containing
the manifold on which the trace map is defined, its partial derivatives will all be C∞, and therefore
the map is smooth), therefore, the map Θ 7→ Tr(Σ−1Σ̇V̄ (Θ)Σ−1Σ̇W̄ (Θ)) is smooth, as a composition
of smooth maps. It follows that F̄ is a smooth map, as smoothness in preserved by linear combination.
We can conclude that the FR metric is a Riemannian metric on M.

5. Let A ∈ Rd×d be invertible and b ∈ Rd, and consider the map ϕ : M = Rd ×Pd → M defined by
ϕ(µ,Σ) = (Aµ+ b, AΣAT ). Observe first that ∀Σ ∈ Pd, AΣAT ∈ Pd since ∀x ∈ Rd non-zero, one has
xTAΣATx = (ATx)Σ(ATx) > 0, since ATx ∈ Rd is non-zero and Σ ∈ Pd, and therefore the map ϕ is
well-defined.
We first show that ϕ is bijective. To do so, we define the map ϕ−1 : M → M such that ϕ−1(µ,Σ) =
(A−1(µ− b), A−1ΣA−T ) which is well-defined since A is invertible, and with an identical argument as
before, one has that A−1ΣA−T ∈ Pd whenever Σ ∈ Pd. We now claim that ϕ−1 is the inverse map of

4
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ϕ. Indeed, let (µ,Σ) ∈ M, then we have :

ϕ−1 ◦ ϕ(µ,Σ) = ϕ−1(Aµ+ b, AΣAT )

= (A−1(Aµ+ b− b), A−1(AΣAT )A−T )

= (µ,Σ)

and

ϕ ◦ ϕ−1(µ,Σ) = ϕ(A−1(µ− b), A−1ΣA−T )

= (A(A−1(µ− b)) + b, A(A−1ΣA−T )AT )

= (µ,Σ)

We now argue that ϕ is a diffeomorphism. Indeed, ϕ is a smooth map, as one can consider the
extension ϕ̄ : Rd × Symd → Rd × Symd defined by ϕ̄(µ,Σ) = (Aµ+ b, AΣAT ), and see that since the
left-hand side is only composed of matrix multiplications and additions, ϕ̄ is polynomial in the entries
of its input, and therefore, as a map between linear spaces, its partial derivatives will all be C∞, which
implies that it is a smooth extension of ϕ. Now, we also have that ϕ−1 is smooth, as, similarly, one can
consider the extension ϕ̄−1 : Rd×Symd → Rd×Symd defined by ϕ̄−1(µ,Σ) = (A−1(µ−b), A−1ΣA−T ),
and since A is invertible, and here agin for the same reason, it is polynomial in the entries of µ and
Σ, and therefore, all its partial derivatives will be C∞, and ϕ̄−1 is a smooth extension of ϕ−1.
We now want to verify that ∀(Θ, Θ̇1), (Θ, Θ̇2) ∈ TM we have ⟨Θ̇1, Θ̇2⟩Θ = ⟨Dϕ(Θ)[Θ̇1], Dϕ(Θ)[Θ̇2⟩ϕ(Θ)

Now, decompose Θ = (µ,Σ) and Θ̇i = (µ̇i, Σ̇i), i = 1, 2. We have for i = 1, 2 :

Dϕ(Θ)[Θ̇i] = lim
t→0

ϕ(µ+ tµ̇i,Σ+ tΣ̇i)− ϕ(µ,Σ)

t

= lim
t→0

(Aµ+ tAµ̇i + b, AΣAT + tAΣ̇iA
T )− (Aµ+ b, AΣAT )

t

= (Aµ̇i, AΣ̇iA
T )

Therefore, we can compute :

⟨Dϕ(Θ)[Θ̇1], Dϕ(Θ)[Θ̇2⟩ϕ(Θ) = Tr((AΣAT )−1AΣ̇1A
T (AΣAT )−1AΣ̇2A

T ) + 2(Aµ̇1)
T (AΣAT )−1(Aµ̇2)

= Tr(A−TΣ−1A−1AΣ̇1A
TA−TΣ−1A−1AΣ̇2A

T ) + 2µ̇T1 A
TA−TΣ−1A−1Aµ̇2

= Tr(A−TΣ−1Σ̇1Σ
−1Σ̇2A

T ) + 2µ̇T1 Σ
−1µ̇2

= Tr(Σ−1Σ̇1Σ
−1Σ̇2A

TA−T ) + 2µ̇T1 Σ
−1µ̇2

= Tr(Σ−1Σ̇1Σ
−1Σ̇2) + 2µ̇T1 Σ

−1µ̇2

= ⟨Θ̇1, Θ̇2⟩Θ

where we used the fact that the trace is invariant under cyclic permutations.
Therefore, ϕ is an isometry of the Riemannian manifold (Rd × Pd, ⟨·, ·⟩FR)

6. Clearly, if we define ϕ : Pd → Pd by ϕ(Σ) = Σ−1, then the inverse map ϕ−1 : Pd → Pd exists,
is well-defined (we recall that the inverse of a symmetric positive-definite matrix is a symmetric
positive-definite matrix), and is just ϕ itself, showing that ϕ is bijective. We now argue that ϕ (and
therefore its inverse too) is smooth. To do so, consider an extension ϕ̄ : GLd(R) → GLd(R), defined
by ϕ̄(Σ) = Σ−1,Σ ∈ GLd(R), where GLd(R) denotes the set of d × d matrices with real coefficients,
that are invertible. Observe that GLd(R) is an open neighborhood of Pd. Indeed, clearly, it contains

5
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Pd, and it is open since we have that GLd(R) = det−1(R\{0}) is the preimage of an open set by
a continuous map (the determinant map), and is therefore open as well. Now, to show that ϕ̄ is a
smooth map, we observe that ∀Σ ∈ GLd(R), we have Σ−1 = det(Σ)−1adj(Σ), where adj(Σ) denotes
the adjucate matrix of Σ whose entries are polynomial in the coefficients of Σ. Since det(Σ) is also a
polynomial in the coefficients of Σ, each entry of Σ−1 is a rational polynomial in the coefficients of Σ
and therefore the map ϕ̄ admits C∞ partial derivatives, and is therefore smooth, showing that it is a
smooth extension of ϕ, and therefore ϕ is smooth. This way, we showed that ϕ is a diffeomorphism.
Recall now that we can identify the tangent spaces TΣPd of Pd with Symd. We now want to show
that ∀(Σ, Σ̇1), (Σ, Σ̇2) ∈ Pd × Symd we have ⟨Σ̇1, Σ̇2⟩Σ = ⟨Dϕ(Σ)[Σ̇1], Dϕ(Σ)[Σ̇2]⟩ϕ(Σ) . To do so, we
start by computing Dϕ(Σ)[Σ̇i] for i = 1, 2. The computation follows from the product rule. Indeed,
let ψ : Pd → Pd be the identity map. It is clear that (ϕ · ψ)(Σ) = Σ−1Σ = Id. Therefore, we have :

0d×d = D(ϕ · ψ)(Σ)[Σ̇i]
= Dϕ(Σ)[Σ̇i]ψ(Σ) + ϕ(Σ)Dψ(Σ)[Σ̇i]

= Dϕ(Σ)[Σ̇i]Σ + Σ−1Σ̇i

=⇒ Dϕ(Σ)[Σ̇i] = −Σ−1Σ̇iΣ
−1

Where we used the fact that 0d×d = D(ϕ · ψ)(Σ)[Σ̇i] since ϕ · ψ is a constant map, therefore its
differential is zero, and Dψ(Σ)[Σ̇i] = Σ̇i, because ψ is the identity map. Therefore we have :

⟨Dϕ(Σ)[Σ̇1], Dϕ(Σ)[Σ̇2]⟩ϕ(Σ) = ⟨−Σ−1Σ̇1Σ
−1,−Σ−1Σ̇2Σ

−1⟩Σ−1

= Tr((Σ−1)−1(−Σ−1Σ̇1Σ
−1)(Σ−1)−1(−Σ−1Σ̇2Σ

−1))

= Tr(ΣΣ−1Σ̇1Σ
−1ΣΣ−1Σ̇2Σ

−1)

= Tr(Σ̇1Σ
−1Σ̇2Σ

−1)

= Tr(Σ−1Σ̇1Σ
−1Σ̇2)

= ⟨Σ̇1, Σ̇2⟩Σ

Showing that the map Σ 7→ Σ−1 is an isometry of the Riemannian manifold (Pd, ⟨·, ·⟩FR).

7. We first show that Pbr,d+1 is an embedded submanifold of the manifold Pd+1 . To do so we
consider the map h : Pd+1 → R defined by h(X) = Tr(EX) − 1 = [X](d+1)×(d+1) − 1, where E is
defined to be the (d+1)×(d+1) matrix whose entries are all zeros, except the bottom right one, which
is equal to 1. Observe that R is a linear space, and therefore a manifold, of dimension 1. Observe also
that h is a linear map, and since we already argued that the trace map is smooth, we have that h is a
smooth map too, as composition of smooth maps. We will use corollary 8.76 in the textbook to show
that Pbr,d+1 is an embedded submanifold of the manifold Pd+1. Indeed, we see that Pbr,d+1 = h−1(0)
is a non-empty level set. As for the differential of h we have for any X ∈ Pd+1, U ∈ Symd+1:

Dh(X)[U ] = lim
t→0

h(X + tU)− h(X)

t

= lim
t→0

tr(E(tX + U))− 1− tr(EX) + 1

t

= tr(EU)

where we used the linearity of the trace map. Clearly, whenever X ∈ Pd+1, Dh(X) is a linear map
from Symd+1 to R, which is non-zero, so its image has to be whole R and therefore, it is of rank

6



T. Renard, B. Müller Gaussian Mixture Models April 2023

1 = dimR. So we conclude by the Corollary 8.76 that Pbr,d+1 is an embedded submanifold of the
manifold Pd+1 and it has dimension :

dimPbr,d+1 = dimPd+1 − 1

=
(d+ 1)2 + d+ 1

2
− 1

=
d(d+ 3)

2

Indeed, recall that dim(TXPd+1) = dimPd+1, but by the question 2, we can identify TXPd+1 with
Symd+1, which a linear space of dimension (d+1)2+d+1

2 . As for the tangent spaces, since h is a local
defining function for Pbr,d+1, we have :

TXPbr,d+1 = kerDh(X)

= {A ∈ Symd+1|Dh(X)[A] = 0}
= {A ∈ Symd+1|Tr(EA) = 0}
= {A ∈ Symd+1|[A](d+1)×(d+1) = 0}

Now, the fact that Pbr,d+1 is an embedded submanifold of Symd+1 immediately follows from the
question 2 of the first exercise in the exercise session 3, since we already know that Pd+1 is an
embedded submanifold of the linear space Symd+1, Pbr,d+1 is a subset of Pd+1 defined as the 0 level
set of smooth function h : Pd+1 → R, which admits differentials of constant rank 1,∀X ∈ Pbr,d+1.

8. Let ϕ : Rd × Pd → Pbr,d+1 defined by ϕ(µ,Σ) =

(
Σ+ µµt µ
µt 1

)
. Now, define the map ϕ−1 :

Pbr,d+1 → Rd ×Pd defined, for any X =

(
A b
bt 1

)
∈ Pbr,d+1 where b ∈ Rd and A ∈ Pd to ensure that

X is indeed in Pbr,d+1, by ϕ−1(X) = (b, A − bbt). We have that this map is well defined, i.e, that
(b, A− bbt) ∈ Rd×Pd. Indeed, A− bbt is symmetric since (A− bbt)t = At− (bbt)t = A− bbt, and it is
also positive-definite. Indeed, since X is positive-definite we have that ∀z = (x, y) ∈ Rd+1 non-zero,
where x ∈ Rd and y ∈ R:

ztXz > 0

=⇒ xtAx+ xtby + ybtx+ y2 > 0

=⇒ xtAx+ 2yxtb+ y2 > 0

(where we used the developed expression for a quadratic map using block matrix representation) In
particular, if we let z = (x,−xtb) for a non-zero x ∈ Rd, then z is still non-zero, and therefore :

xtAx− 2(xtb)2 + (xtb)2 > 0

=⇒ xtAx− (xtb)2 > 0

=⇒ xtAx− xtbbtx > 0

=⇒ xt(A− bbt)x > 0

showing that A− bbt is indeed positive-definite, and thus, ϕ−1 is well-defined.
We now show that ϕ−1 is the inverse map of ϕ, showing that ϕ is a bijection. To do so, let (µ,Σ) ∈

7
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Rd × Pd, then :

ϕ−1 ◦ ϕ(µ,Σ) = ϕ−1

(
Σ+ µµt µ
µt 1

)
= (µ, (Σ + µµt)− µµt)

= (µ,Σ)

Now, let X =

(
A b
bt 1

)
∈ Pbr,d+1, then :

ϕ ◦ ϕ−1(X) = ϕ(b, A− bbt)

=

(
(A− bbt) + bbt b

bt 1

)
=

(
A b
bt 1

)
= X

as wanted.
Now, we argue that ϕ is smooth. To do so, consider the extension ϕ̄ : M = Rd × Symd → Symd+1

defined by ϕ̄(µ,Σ) =

(
Σ+ µµt µ
µt 1

)
, where we already know that M is a linear space containing

Rd×Pd, and similarly, Symd+1 is a linear space containing Pbr,d+1 as a subset. Clearly, this extension
is well-defined. Now, observe that the expression of ϕ̄(µ,Σ) is polynomial in the entries of the input
(µ,Σ), and it follows that the partial derivatives of ϕ̄ will necessarily be C∞, therefore, ϕ̄ is a smooth
extension of ϕ, showing that ϕ is smooth.
Finally, we show that ϕ−1 is also a smooth map. To do so, consider the extension ϕ̄−1 : Symd+1 → M,

between linear spaces as before, defined for any X =

(
A b
bt 1

)
∈ Symd+1 by ϕ̄−1(X) = (b, A − bbt).

Observe that whenever X =

(
A b
bt 1

)
∈ Symd+1, then it has to be that b ∈ Rd and A ∈ Symd, so that

ϕ̄−1 is a well-defined map (i.e A− bbt is indeed in Symd). Observe now that the expression of ϕ̄(X)

is polynomial in the entries of the input X =

(
A b
bt 1

)
, and it follows that the partial derivatives of

ϕ̄−1 will necessarily be C∞, therefore, ϕ̄−1 is a smooth extension of ϕ−1, showing that ϕ−1 is smooth
as well.
In conclusion, we showed that the map ϕ : Rd × Pd → Pbr,d+1 is indeed a diffeomorphism.

9. To show that the map ϕ is an isometry from (Rd × Pd, ⟨·, ·⟩)FR to (Pbr,d+1, ⟨·, ·⟩)FR, since by
question 8 we already showed that ϕ is a diffeomorphism, we just need to show that ∀(Θ, Θ̇1), (Θ, Θ̇2) ∈
Rd × Pd × Rd × Symd we have ⟨Θ̇1, Θ̇2⟩Θ = ⟨Dϕ(Θ)[Θ̇1], Dϕ(Θ)[Θ̇2]⟩ϕ(Θ). Note that we actually
decompose Θ = (µ,Σ) and Θ̇i = (µ̇i, Σ̇i), i = 1, 2, where µ ∈ Rd, Σ ∈ Pd, µ̇i ∈ Rd, Σ̇i ∈ Symd for
i = 1, 2.

8
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We start by doing the following computation for i = 1, 2 :

Dϕ(Θ)[Θ̇i] = lim
t→0

ϕ(µ+ tµ̇i,Σ+ tΣ̇i)− ϕ(µ,Σ)

t

= lim
t→0

1

t

(
Σ+ tΣ̇i + (µ+ tµ̇i)(µ+ tµ̇i)

t µ+ tµ̇i
µ+ tµ̇ti 1

)
− 1

t

(
Σ+ µµt µ
µt 1

)
= lim
t→0

1

t

(
Σ+ tΣ̇i + (µ+ tµ̇i)(µ+ tµ̇i)

t − Σ− µµt µ+ tµ̇i − µ
µ+ tµ̇ti − µt 1− 1

)
= lim
t→0

1

t

(
tΣ̇i + tµ̇iµ

t + tµµ̇ti + t2µ̇iµ̇
t
i tµ̇i

tµ̇ti 0

)
=

(
Σ̇i + µ̇iµ

t + µµ̇ti µ̇i
µ̇ti 0

)
Now we can compute :

⟨Dϕ(Θ)[Θ̇1], Dϕ(Θ)[Θ̇2]⟩ϕ(Θ) =

Tr(
(
Σ+ µµt µ
µt 1

)−1 (
Σ̇1 + µ̇1µ

t + µµ̇t1 µ̇1

µ̇t1 0

) (
Σ+ µµt µ
µt 1

)−1 (
Σ̇2 + µ̇2µ

t + µµ̇t2 µ̇2

µ̇t2 0

)
)

We start by giving a nice expression for
(
Σ+ µµt µ
µt 1

)−1

which follows from expressions of inverse

block matrices :(
Σ+ µµt µ
µt 1

)−1

=

(
(Σ + µµt − µµt)−1 −(Σ + µµt − µµt)−1µ

−µt(Σ + µµt − µµt)−1 1 + µtΣ−1µ

)
=

(
Σ−1 −Σ−1µ

−µtΣ−1 1 + µtΣ−1µ

)
We now compute the following expression for i = 1, 2 :(
Σ+ µµt µ
µt 1

)−1 (
Σ̇i + µ̇iµ

t + µµ̇ti µ̇i
µ̇ti 0

)
=

(
Σ−1 −Σ−1µ

−µtΣ−1 1 + µtΣ−1µ

)(
Σ̇i + µ̇iµ

t + µµ̇ti µ̇i
µ̇ti 0

)
=

(
Σ−1(Σ̇i + µ̇iµ

t + µµ̇ti)− Σ−1µµ̇ti Σ−1µ̇i
−µtΣ−1(Σ̇i + µ̇iµ

t + µµ̇ti) + (1 + µtΣ−1µ)µ̇ti −µtΣ−1µ̇i

)
=

(
Σ−1(Σ̇i + µ̇iµ

t) Σ−1µ̇i
−µtΣ−1(Σ̇i + µ̇iµ

t) + µ̇ti −µtΣ−1µ̇i

)
Now we compute the product between these expressions for i = 1, 2 yielding :(

Σ+ µµt µ
µt 1

)−1 (
Σ̇1 + µ̇1µ

t + µµ̇t1 µ̇1

µ̇t1 0

) (
Σ+ µµt µ
µt 1

)−1 (
Σ̇2 + Ifweµ̇2µ

t + µµ̇t2 µ̇2

µ̇t2 0

)
=(

A ∗
∗ b

)
Where

A = Σ−1(Σ̇1 + µ̇1µ
t)Σ−1(Σ̇2 + µ̇2µ

t) + (Σ−1µ̇1)(−µtΣ−1(Σ̇2 + µ̇2µ
t) + µ̇t2)

b = (−µtΣ−1(Σ̇1 + µ̇1µ
t) + µ̇1)Σ

−1µ̇2 + µtΣ−1µ̇1µ
tΣ−1µ̇2

9
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And the entries denoted by ∗ were not computed since they will not be taken in account when
computing the trace of this matrix, as we will only add the trace of the two diagonal blocks. We have
after simplification :(

A ∗
∗ b

)
=

(
Σ−1Σ̇1(Σ

−1Σ̇2 +Σ−1µ̇2µ
t) + Σ−1µ̇1µ̇

t
2 ∗

∗ −µtΣ−1Σ̇1Σ
−1µ̇2 + µ̇t1Σ

−1µ̇2

)
And we can finally compute :

⟨Dϕ(Θ)[Θ̇1], Dϕ(Θ)[Θ̇2]⟩ϕ(Θ) = Tr(A) + Tr(b)

= Tr(Σ−1Σ̇1(Σ
−1Σ̇2 +Σ−1µ̇2µ

t) + Σ−1µ̇1µ̇
t
2) + Tr(−µtΣ−1Σ̇1Σ

−1µ̇2 + µ̇t1Σ
−1µ̇2)

= Tr(Σ−1Σ̇1Σ
−1Σ̇2) + Tr(Σ−1Σ̇1Σ

−1µ̇2µ
t) + Tr(Σ−1µ̇1µ̇

t
2)− Tr(µtΣ−1Σ̇1Σ

−1µ̇2)

+Tr(µ̇t1Σ
−1µ̇2)

= Tr(Σ−1Σ̇1Σ
−1Σ̇2) + Tr(Σ−1Σ̇1Σ

−1µ̇2µ
t) + Tr(µ̇t2Σ

−1µ̇1)− Tr(Σ−1Σ̇1Σ
−1µ̇2µ

t)

+Tr(µ̇t1Σ
−1µ̇2)

= Tr(Σ−1Σ̇1Σ
−1Σ̇2) + µ̇t2Σ

−1µ̇1 + µ̇t1Σ
−1µ̇2

= Tr(Σ−1Σ̇1Σ
−1Σ̇2) + 2µ̇t1Σ

−1µ̇2

= ⟨Θ̇1, Θ̇2⟩Θ
Showing that ϕ is indeed an isometry from (Rd × Pd, ⟨·, ·⟩FR) to (Pbr,d+1, ⟨·, ·⟩FR).

1.2 Reparameterizing the problem (MLE1)

10. Consider qd+1(X; y) =
√
2π exp ( 12 )pd+1(0, X; y) where yt = [xt, 1] ∈ Rd+1 and X = ϕ(µ,Σ) =(

Σ+ µµt µ
µt 1

)
, we then have :

qd+1(X; y) =
√
2π exp (

1

2
) det(X)−

1
2 (2π)−

d+1
2 exp(−1

2
ytX−1y)

= (2π)−
d
2 exp (

1

2
) det(Σ + µµt − µµt)−

1
2 exp(−1

2
ytX−1y)

= det(Σ)−
1
2 (2π)−

d
2 exp(

1

2
(1− ytX−1y))

Using expressions for the determinant of block matrices. We now do the following computation :

1− ytX−1y = 1− [xt, 1]

(
Σ+ µµt µ
µt 1

)−1 (
x
1

)
= 1− [xt, 1]

(
Σ−1 −Σ−1µ

−µtΣ−1 1 + µtΣ−1µ

)(
x
1

)
= 1− [xt, 1]

(
Σ−1x− Σ−1µ

−µtΣ−1x+ 1 + µtΣ−1µ

)
= 1− xtΣ−1x+ xtΣ−1µ+ µtΣ−1x− 1− µtΣ−1µ

= −(x− µ)tΣ−1(x− µ)

as wanted, and therefore we get :

qd+1(X; y) = det(Σ)−
1
2 (2π)−

d
2 exp(−1

2
(x− µ)tΣ−1(x− µ))

= pd(µ,Σ;x)

10



T. Renard, B. Müller Gaussian Mixture Models April 2023

11. In the case k = 1, we only have on weight, which has to be equal to 1. Therefore, our problem
can be seen as minimizing l(X) = −

∑n
i=1 log(q(X; yi)) over Pbr,d+1. We transform our cost function

to have :

l(X) = −
n∑
i=1

log(
√
2π exp(

1

2
) det(X)−

1
2 (2π)−

d+1
2 exp(−1

2
ytiX

−1yi)

= −
n∑
i=1

(
1

2
− d

2
log(2π)− 1

2
log(det(X))− 1

2
ytiX

−1yi)

= −n
2
+
nd

2
log(2π) +

n

2
log(det(X)) +

n∑
i=1

1

2
ytiX

−1yi

and here we clearly see that our optimization problem is equivalent to the following problem:

min
X∈Pbr,d+1

n log(det(X)) +

n∑
i=1

ytiX
−1yi

From now on, since Pbr,d+1 is a subset of Pd+1, all the arguments that we used in the question 1 can
be applied here again, that is, we can again look at the expression when we replace X by A−1, observe
the strict convexity of the function, differentiate and equalize to zero, just as it was done in question
1, and get this time a unique critical point X̂ = 1

n

∑n
i=1 yiy

t
i . We indeed have X̂ ∈ Pbr,d+1 as it is

clearly symmetric positive definite and additionally :

[X̂]d+1,d+1 = [
1

n

n∑
i=1

yiy
t
i ]d+1,d+1

=
1

n

n∑
i=1

[yiy
t
i ]d+1,d+1

= 1

since the d-th entry of all the yi is equal to 1 by definition, therefore [yiy
t
i ]d+1,d+1 = 1. Moreover,

this unique critical point has to be a global minimum. This observation follows from the fact that the
problem (MLE2) has been obtained from the problem (MLE1) by reparameterizing the latter using a
diffeomorphism, and in the case k = 1 we see that if we apply the diffeomorphism ϕ from question 8
to the global minimum obtained in question 1, we get our critical point for this question.

1.3 Tools for optimization on Pd+1 and Pbr,d+1 with FR metric
12. To show that R is well defined, we need to show that ∀(X,V ) ∈ TPbr,d+1, we have that RX(V )
exists and is in Pbr,d+1. So, consider (X,V ) ∈ TPbr,d+1 and observe first that since Pbr,d+1 is an
embedded submanifold, and in particular a subset, of Pd+1 (it was shown in question 7), it follows that
(X,V ) ∈ TPd+1, and therefore, it makes sense to compute R̃X(V ). We now make the observation that
for any A ∈ Pd+1, the entries on the main diagonal of A cannot be non-positive. Indeed, assume on the
contrary that the i-th entry of the diagonal of A is non-positive, then if we consider the canonical vector
ei ∈ Rd+1 which has only zero entries except a 1 at the i-th entry, it follows that etiAei = [A]i,i ≤ 0,
which contradicts the fact that A is positive-definite. Therefore, 1

[R̃X(V )]d+1,d+1
∈ R is always well

defined since [R̃X(V )]d+1,d+1 can never be non-positive. Now, we see that since R̃X(V ) ∈ Pd+1, and
[R̃X(V )]d+1,d+1 can never be non-positive, it follows that RX(V ) = R̃X(V )

[R̃X(V )]d+1,d+1
is a matrix in Pd+1,

11
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and moreover, [RX(V )]d+1,d+1 =
[R̃X(V )]d+1,d+1

[R̃X(V )]d+1,d+1
= 1, and therefore, RX(V ) ∈ Pbr,d+1 as wanted.

We now argue that R is a smooth map. We see that since R̃ is a retraction, it is a smooth map, and
also, we already argued in question 7 that the map A 7→ [A]d+1,d+1, where A ∈ Pd+1 is a smooth map
(actually, we showed that the map A 7→ [A]d+1,d+1 − 1 is smooth, but it immediately follows that the
map A 7→ [A]d+1,d+1 is smooth too). Therefore, the map (X,V ) 7→ 1

[R̃X(V )]d+1,d+1
is smooth as it is

the composition of the smooth maps R̃, A 7→ [A]d+1,d+1 and x 7→ 1
x (we already know from analysis

courses that the map g : R\{0} → R\{0} defined by g(x) = 1
x is C∞ on R\{0}). It follows that R

is a smooth map as a product of smooth maps (it is the product rule given in the lecture notes from
week 3).
We are now showing the last required property for R to be a retraction on Pbr,d+1. To do so, for each
(X,V ) ∈ TPbr,d+1, we consider the curve c(t) = RX(tV ) = R̃X(tV )

[R̃X(tV )]d+1,d+1
. Observe that since R̃ is a

retraction, we can define the following curve c̃(t) = R̃X(tV ) which necessarily has to satisfy c̃(0) = X

and c̃′(0) = V , and it follows that c(t) = c̃(t)
[c̃(t)]d+1,d+1

.
We immediately see that :

c(0) =
X

[X]d+1,d+1

= X

since X ∈ Pbr,d+1 and therefore [X]d+1,d+1 = 1 by definition.
To show that c′(0) = V , we first define f : R → R by f(t) = 1

[c̃(t)]d+1,d+1
so that c(t) = c̃(t)f(t), and

then, by the product rule, we have:

c′(0) = c̃′(0)f(0) + c̃(0)f ′(0)

= V
1

[X]d+1,d+1
+Xf ′(0)

= V +Xf ′(0)

We now compute f ′(0). To do so, consider the inverse map g : R\{0} → R\{0} defined by g(x) = 1
x ,

and the map F : Pd+1 → R\{0} defined by F (A) = [A]d+1,d+1, and observe that f = g ◦ F ◦ c̃.
Therefore, using the chain rule we have :

f ′(0) = (g ◦ (F ◦ c̃))′(0)
= g′(F ◦ c̃(0))(F ◦ c̃)′(0)

= − 1

F ◦ c̃(0)
(F ◦ c̃)′(0)

= − 1

F (X)
(F ◦ c̃)′(0)

= − 1

[X]d+1,d+1
DF (X)[V ]

= −DF (X)[V ]

= −[V ]d+1,d+1

= 0

Where we used the facts that [X]d+1,d+1 = 1 since X ∈ Pbr,d+1, and [V ]d+1,d+1 = 0, since V ∈
TXPbr,d+1 (recall that the tangent spaces of Pbr,d+1 were defined in question 7 to be the set of all

12
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symmetric (d + 1) × (d + 1) matrices that have their bottom-right entry to be equal to zero), and
(F ◦ c̃)′(0) = DF (X)[V ] was given in the lecture notes of week 3. Therefore, c′(0) = V as wanted.
In conclusion, we showed that R is well defined and is a retraction for Pbr,d+1.

13. Consider the map R̃ : TPd+1 → Pd+1 defined by R̃(X,V ) = R̃X(V ) = X + V + 1
2V X

−1V . We
start by showing that this map is well defined, that is, ∀(X,V ) ∈ Pd+1 × Symd+1 = TPd+1, we have
that R̃X(V ) ∈ Pd+1. We start by showing that R̃X(V ) is symmetric :

R̃X(V )t = (X + V +
1

2
V X−1V )t

= Xt + V t +
1

2
V tX−tV t

= X + V +
1

2
V X−1V

= R̃X(V )

We now show that R̃X(V ) is positive-definite. To do so, since X ∈ Pp+1, we have (recall question 6)
that X−1 ∈ Pd+1 too, and therefore its square root X− 1

2 is well defined and is symmetric positive-
definite too. Therefore we see that :

X− 1
2 R̃X(V )X− 1

2 = X− 1
2 (X + V +

1

2
V X−1V )X− 1

2

= I +X− 1
2V X− 1

2 +
1

2
X− 1

2V X−1V X− 1
2

= I +A+
1

2
A2

where we let A = X− 1
2V X− 1

2 . Since A is clearly symmetric, we can diagonalize it as follows :
A = UDU t, where U is an orthogonal matrix, and D is diagonal. Therefore :

I +A+
1

2
A2 = UU t + UDU t +

1

2
UDU tUDU t

= U(I +D +
1

2
D2)U t

where I +D + 1
2D

2 is a diagonal matrix. Observe that the map x 7→ 1 + x + 1
2x

2 (from R to R) is
strictly positive ∀x ∈ R, and therefore all the entries of I +D + 1

2D
2 are strictly positive, but then,

since these entries are actually the eigenvalues of X− 1
2 R̃X(V )X− 1

2 (follows from the spectral theorem
and the fact that this matrix is symmetric), we have that X− 1

2 R̃X(V )X− 1
2 is positive definite. Now

since X− 1
2 has also to be non-singular, we have for any non zero y ∈ Rd+1 :

ytX− 1
2 R̃X(V )X− 1

2 y = (X− 1
2 y)tR̃X(V )(X− 1

2 y) > 0

and it follows that R̃X(V ) must positive-definite, and therefore the map R̃ is well defined.
Now, we argue that R̃ is smooth. Recall that we already showed in question 6 that the inverse map
X 7→ X−1 is a smooth map (in particular, X−1 is polynomial in the entries of X). Now if we look at
the expression R̃X(V ) = X+V + 1

2V X
−1V , we see that it is only composed of matrix multiplications

and additions, and it contains the inverse of X, so we see that R̃X(V ) is polynomial in the entries of
(X,V ), therefore, if we consider an extension of R from Symd+1 × Symd+1 to Symd+1, it will be a
smooth extension (since all its partial derivatives will necessarily be C∞) and therefore, R is a smooth

13
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map.
Finally, for each (X,V ) ∈ TPd+1, we consider the following curve : c(t) = R̃X(tV ) = X + tV +
t2

2 V X
−1V . We clearly have c(0) = X, and then, c′(t) = V + tV X−1V , which implies that c′(0) = V

as required.
In conclusion, we showed that R̃ is a retraction for Pd+1 defined on all TPd+1.

14. Consider the map R̃ : TPd+1 → Pd+1 defined by R̃(X,V ) = R̃X(V ) = X + V + 1
2V X

−1V . By
the question 13, this is a retraction for Pd+1 defined on all TPd+1. Now define R : TPbr,d+1 → Pbr,d+1

by RX(V ) = R̃X(V )

[R̃X(V )]d+1,d+1
. By question 12, we have that this map is a retraction for Pbr,d+1.

15. The euclidean gradient of f : Pd+1 → R is the unique vector in Symd+1 such that ⟨∇f(X), V ⟩E =
Df(X)[V ],∀X ∈ Pd+1, V ∈ Symd+1 and the Riemannian gradient is the unique vector in Symd+1

such that ⟨gradf(X), V ⟩FR = Df(X)[V ],∀X ∈ Pd+1, V ∈ Symd+1. Therefore, we have :

⟨∇f(X), V ⟩E = ⟨gradf(X), V ⟩FR,∀V ∈ Symd+1

=⇒ Tr(∇f(X)V ) = Tr(X−1gradf(X)X−1V ),∀V ∈ Symd+1

=⇒ Tr(∇f(X)V −X−1gradf(X)X−1V ) = 0,∀V ∈ Symd+1

=⇒ Tr((∇f(X)−X−1gradf(X)X−1)V ) = 0,∀V ∈ Symd+1

=⇒ ⟨∇f(X)−X−1gradf(X)X−1, V ⟩E = 0,∀V ∈ Symd+1

=⇒ ∇f(X)−X−1gradf(X)X−1 = 0d+1×d+1,

=⇒ gradf(X) = X∇f(X)X

where we used the positive-deifniteness of the inner product (observe that here we denoted for sim-
plification E = Symd+1, which is different than the E given at the beginning of the project, and used
the usual inner product on a matrix linear space).

16. Since Pd+1 is a submanifold of the linear space Symd+1, together with the Riemannian metric
⟨·, ·⟩FR, and Pbr,d+1 is viewed as a Riemannian submanifold of Pd+1, if we let f : Pbr,d+1 → R be
a smooth function on Pbr,d+1 with a smooth extension f̄ defined on an open subset of Pd+1 which
contains Pbr,d+1, then the Riemannian gradient of f in (Pbr,d+1, ⟨·, ·⟩FR), denoted gradf , is the or-
thogonal projection of the Riemannian gradient of f̄ on Pd+1, denoted gradf̄ (recall from the previous
question that gradf̄(X) = X∇f̄(X)X,∀X ∈ Pbr,d+1 where ∇f̄ is the euclidean gradient of f̄), that
is, gradf(X) = ProjX(gradf̄(X)),∀X ∈ Pbr,d+1. Here, ProjX : TXPd+1 → TXPbr,d+1 denote the
orthogonal projection onto TXPbr,d+1, that is, ProjX is the unique linear map such that ProjX(V ) ∈
TXPbr,d+1 and ⟨ProjX(V )− V,U⟩FR = 0, ∀V ∈ TXPd+1 = Symd+1 and ∀U ∈ TXPbr,d+1. We claim
that ProjX is defined as follows : ProjX(V ) = V − [V ]d+1,d+1

[X]2d+1,d+1
XEX where E is as before, the matrix

with only zero entries, except a 1 at the bottom-right entry. We now show that this map has the
properties required. We start by showing the linearity, so let t ∈ R, V, U ∈ Symd+1, we have :

ProjX(tU + V ) = tU + V − [tU + V ]d+1,d+1

[X]2d+1,d+1

XEX

= tU + V − t[U ]d+1,d+1 + [V ]d+1,d+1

[X]2d+1,d+1

XEX

= tU − t
[U ]d+1,d+1

[X]2d+1,d+1

XEX + V − [V ]d+1,d+1

[X]2d+1,d+1

XEX

= tProjX(U) + ProjX(V )

14
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We now show that ∀V ∈ Symd+1 we have ProjX(V ) ∈ TXPbr,d+1, that is, [ProjX(V )]d+1,d+1 = 0.
Indeed, we have :

[ProjX(V )]d+1,d+1 = [V − [V ]d+1,d+1

[X]2d+1,d+1

XEX]d+1,d+1

= [V ]d+1,d+1 −
[V ]d+1,d+1

[X]2d+1,d+1

[XEX]d+1,d+1

= [V ]d+1,d+1 −
[V ]d+1,d+1

[X]2d+1,d+1

[X]2d+1,d+1 = 0

where the fact that [XEX]d+1,d+1 = [X]2d+1,d+1 comes from the observation that EX is a matrix
having its first d rows completely filled with zeros, and the last row is just the last row of X, so
[XEX]d+1,d+1 is equal to the inner product (the usual inner product on Rd+1) between the d+ 1-th
row of X and the d+1-th column of EX, the latter having only zero entries except [X]d+1,d+1 at the
last one, yielding [XEX]d+1,d+1 = [X]2d+1,d+1.
Finally we show that ∀V ∈ Symd+1 and ∀U ∈ TXPbr,d+1 we have that ⟨ProjX(V ) − V,U⟩FR = 0.
Note that since U ∈ TXPbr,d+1, [U ]d+1,d+1 = 0. Now we compute :

⟨ProjX(V )− V,U⟩FR = ⟨− [V ]d+1,d+1

[X]2d+1,d+1

XEX,U⟩X

= − [V ]d+1,d+1

[X]2d+1,d+1

⟨XEX,U⟩X

= − [V ]d+1,d+1

[X]2d+1,d+1

Tr(X−1XEXX−1U)

= − [V ]d+1,d+1

[X]2d+1,d+1

Tr(EU)

But EU is a matrix whose first d rows are completely filled with zeros, and the last row is just the
d+ 1-th row of U , and since [U ]d+1,d+1 = 0, it follows that Tr(EU) = 0, and the conclusion follows.
Observe that whenever X ∈ Pbr,d+1, [X]d+1,d+1 = 1 and we can further simplify the expression of the
projection and have ProjX(V ) = V − [V ]d+1,d+1XEX.
We can now compute the Riemannian gradient of f :

gradf(X) = ProjX(gradf̄(X))

= ProjX(X∇f̄(X)X)

= X∇f̄(X)X − [X∇f̄(X)X]d+1,d+1XEX

17. We implement all our functions and programs to be compatible with Manopt [1], and we write
a manifold factory for Pbr,d+1 based on Pd+1 wich correspond to sympositivedefinitefactory.m

in Manopt. For the details of the code, it can be read in the Github repository Benoit-Muller/opti-
manifolds-GMM [2], the manifold factory correspond to the file spd_br_factory.m. We make widely
use of all the results prooved before.

1.4 Optimizing over the weights
18. We first show that the map ψ : Sk−1 → ∆k−1 is well-defined. Let u = (u1, . . . , uk) ∈ Sk−1, then,
v = ψ(u) = u ⊙ u = (u21, . . . , u

2
k). We now see that

∑k
j=1 vj =

∑k
j=1 u

2
j = ∥u∥22 = 1 since u ∈ Sk−1.

15
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Moreover, u2j ≥ 0,∀j = 1, . . . , k, so ψ(u) ∈ ∆k−1 and ψ is well defined.
We now show that ψ is surjective. Let u = (u1, . . . , uk) ∈ ∆k−1, that is,

∑k
j=1 uj = 1 and uj ≥ 0,∀j =

1, . . . , k. Since uj ≥ 0,∀j = 1, . . . , k it makes sense to define vj =
√
uj ,∀j = 1, . . . , k, so that we can

consider the vector v = (v1, . . . , vk). We have that ∥v∥22 =
∑k
j=1 v

2
j =

∑k
j=1

√
uj

2 =
∑k
j=1 uj = 1; so

v ∈ Sk−1 and clearly, ψ(v) = v ⊙ v = (v21 , . . . , v
2
k) = (u1, . . . , uk) = u as wanted.

Finally, ψ is not injective. As an example of why it is not, consider the two distinct vectors u =
(0, . . . , 0, 1), v = (0, . . . , 0,−1) ∈ Sk−1, then ψ(u) = (0, . . . , 0, 1) = ψ(v).

19. Consider the set U := {w ∈ Rk : wj > 0,∀j = 1, . . . , k}, which is clearly an open neighborhood
of ∆k−1

+ in Rk. Let h : U → R defined by h(w) = (
∑k
j=1 wj) − 1. Clearly, U ∩ ∆k−1

+ = {w ∈ U :

h(w) = 0} = h−1(0) and h is clearly smooth as it is polynomial in the entries of w. We now compute
∀v ∈ Rk and ∀w ∈ ∆k−1

+ :

Dh(w)[v] = lim
t→0

h(w + tv)− h(w)

t

=

k∑
j=1

vj

= (1, . . . , 1)v

=⇒ Dh(w) = (1, . . . , 1)t

And therefore, clearly, Dh(w) is of rank 1 ∀w ∈ ∆k−1
+ , showing that h is a local defining function for

∆k−1
+ . We then have by a theorem in the lecture notes the following expression for the tangent spaces

of ∆k−1
+ :

Tw∆
k−1
+ = kerDh(w),∀w ∈ ∆k−1

+

= {v ∈ Rk : Dh(w)[v] = 0}

= {v ∈ Rk :

k∑
j=1

vj = 0}

20. We first show that it defines a metric on ∆k−1
+ , that is, ∀w ∈ ∆k−1

+ , ⟨·, ·⟩w is an inner product
for Tw∆k−1

+ . Observe first that ⟨·, ·⟩w is well defined, since wj > 0,∀j = 1, . . . , k, so that it makes
sense to divide by wj .
We first show the symmetry. Let ẇ, ẇ′ ∈ Tw∆

k−1
+ , we have :

⟨ẇ, ẇ′⟩w =
1

4

k∑
j=1

ẇjẇ
′
j

wj

=
1

4

k∑
j=1

ẇ′
jẇj

wj

= ⟨ẇ′, ẇ⟩w

16
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We now show the bilinearity. Let ẇ, ẇ′, ẇ′′ ∈ Tw∆
k−1
+ and a, b ∈ R, we have :

⟨aẇ + bẇ′, ẇ′′⟩w =
1

4

k∑
j=1

(aẇj + bẇ′
j)ẇ

′′
j

wj

=
1

4

k∑
j=1

aẇjẇ
′′
j + bẇ′

jẇ
′′
j

wj

= a
1

4

k∑
j=1

ẇjẇ
′′
j

wj
+ b

1

4

k∑
j=1

ẇ′
jẇ

′′
j

wj

= a⟨ẇ, ẇ′′⟩w + b⟨ẇ′, ẇ′′⟩w

and the linearity in the second argument follows by symmetry.
Finally, we show the positive-definiteness. Let ẇ ∈ Tw∆

k−1
+ be a non-zero vector, then:

⟨ẇ, ẇ⟩w =
1

4

k∑
j=1

ẇ2
j

wj

But since, ẇ2
j ≥ 0,∀j = 1, . . . , k, and ẇ is a non-zero vector, then at least one of the ẇj is non-zero,

so that ẇ2
j > 0 and ⟨ẇ, ẇ⟩w > 0 as wanted.

We now show that ⟨·, ·⟩w on ∆k−1
+ is a Riemannian metric. To do so, let V,W be two smooth vector

fields on ∆k−1
+ , and define the map F : ∆k−1

+ → R by F (w) = ⟨V (w),W (w)⟩w. We will show that F
is a smooth function. . Since both V and W are smooth vector fields on ∆k−1

+ , by proposition 3.45 in
the textbook, there exists smooth vector fields V̄ and W̄ defined on an open neighborhood of ∆k−1

+ ,
say U1 and U2 respectively, such that V = V̄ |∆k−1

+
and W = W̄ |∆k−1

+
. We can assume that we can take

U1 and U2 small enough so that both are open subsets of the set {w ∈ Rk : wj > 0,∀j = 1, . . . , k}.
Observe that U = U1∩U2 is an open neighborhood of ∆k−1

+ in Rk. We now define the map F̄ : U → R

defined by F (w) = 1
4

∑k
j=1

V̄j(w)W̄j(w)

wj
, where we decomposed V̄ (w) = (V̄1(w), . . . , V̄k(w)) and

similarly for W̄ , so that F = F̄ |∆k−1
+

. Note that since we U ⊆ {w ∈ Rk : wj > 0,∀j = 1, . . . , k},
it makes sense to divide by wj and therefore F̄ is a well defined map. Observe that since V̄ is a
smooth extension of V , we can view each V̄j as a smooth map from U to R, and the same goes for
W̄ . It follows that the map w 7→ V̄j(w)W̄j(w) is smooth ∀j = 1, . . . , k as a product of smooth maps,
and since wj > 0,∀j = 1, . . . , k, the map w 7→ 1

wj
is smooth too ∀j = 1, . . . , k. Therefore the map

w 7→ V̄j(w)W̄j(w)

wj
is smooth ∀j = 1, . . . , k, and so F̄ is smooth as a linear combination of smooth

maps. In conslusion, F̄ is a smooth extension of F and it follows that F is smooth, so that our metric
is indeed a Riemannian metric on ∆k−1

+ .

21. We start by showing that ψ : Sk−1
+ → ∆k−1

+ is a bijection. We start by showing that it is
surjective. Indeed, let u = (u1, . . . , uk) ∈ ∆k−1

+ , that is,
∑k
j=1 uj = 1 and uj > 0,∀j = 1, . . . , k. Since

uj > 0,∀j = 1, . . . , k it makes sense to define vj =
√
uj ,∀j = 1, . . . , k, so that we can consider the

vector v = (v1, . . . , vk). We have that ∥v∥22 =
∑k
j=1 v

2
j =

∑k
j=1

√
uj

2 =
∑k
j=1 uj = 1; so v ∈ Sk−1

and clearly, vj > 0,∀j = 1, . . . , k, so that v ∈ Sk−1
+ . Moreover, ψ(v) = v ⊙ v = (v21 , . . . , v

2
k) =

(u1, . . . , uk) = u as wanted.

17
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We now show that it is injective. Let u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ Sk−1
+ such that ψ(u) = ψ(v),

that is, u2j = v2j ,∀j = 1, . . . , k. Now, since both uj and vj are strictly positive, the only solution
for these equations is uj = vj ,∀j = 1, . . . , k, and therefore u = v. Therefore, since ψ is bijective, it
necessarily admits an inverse map ψ−1 : ∆k−1

+ → Sk−1
+ , which is well defined, and clearly, it is defined

by ψ(u) = (
√
u1, . . . ,

√
uk),∀u ∈ ∆k−1

+ .
We now argue that both ψ and ψ−1 are smooth. For ψ, define the map ψ̄ : Rk → Rk by ψ̄(u) =
(u21, . . . , u

2
k) which is clearly a smooth extension of ψ since it is polynomial in the entries of u ∈ Rk.

Now, For ψ−1, define the map ψ̄−1 : Rk>0 → Rk>0, where Rk>0 = {w ∈ Rk : wj > 0,∀j = 1, . . . , k}
is an open neighborhood of ∆k−1

+ , by ψ̄−1(u) = (
√
u1, . . . ,

√
uk), which is a smooth extension of ψ−1

as each of its coordinate function u 7→ √
uj is smooth ∀j = 1, . . . , k on Rk>0 (as a composition of the

smooth maps u 7→ uj and x 7→
√
x for x ∈ R and x > 0).

In conclusion, the entry-wise squaring map ψ : Sk−1
+ → ∆k−1

+ is a diffeomorphism.

22. To show that ψ : Sk−1
+ → ∆k−1

+ is an isometry from Sk−1
+ with the usual Riemannian met-

ric to ∆k−1
+ with the Riemannian metric previously defined, we need to show that ⟨u, v⟩Sk−1

+
=

⟨Dψ(w)[u], Dψ(w)[v]⟩∆k−1
+

, for all (w, u), (w, v) ∈ TSk−1
+ . We first compute :

Dψ(w)[u] = lim
t→0

ψ(w + tu)− ψ(w)

t

= lim
t→0

1

t
((w1 + tu1)

2 − w2
1, . . . , (wk + tuk)

2 − w2
k)

= lim
t→0

1

t
(2tw1u1 + t2u21, . . . , 2twkuk + t2u2k)

= 2(w1u1, . . . , wkuk)

and similarly, Dψ(w)[v] = 2(w1v1, . . . , wkvk), and therefore :

⟨Dψ(w)[u], Dψ(w)[v]⟩∆k−1
+

= ⟨Dψ(w)[u], Dψ(w)[v]⟩ψ(w)

=
1

4

k∑
j=1

2wjuj2wjvj
w2
j

=
1

4

k∑
j=1

4w2
jujvj

w2
j

=

k∑
j=1

ujvj

= ⟨u, v⟩Sk−1
+

as wanted.

1.5 Computing Riemannian gradients of the negative log-likelihood

23. Let M = Sk−1 ×
∏k
j=1 Pbr,d+1 and l : M → R the cost function defined in problem (MLE3).

We start by recalling the Product Metric exercise in the exercise session 4 stating that we can turn
the product of Riemannian manifolds into a Riemannian manifold by giving it the Riemannian prod-
uct metric, (which, we briefly recall, consists of "adding" the metrics altogether), and for a smooth
function f from this product Riemannian manifold to R, its gradient can be seen as the vector whose

18
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entries are the respective gradients of the functions obtained from f by fixing all the inputs in their
respective manifold, except one. Our strategy to compute the Riemannian gradient of l will be to
compute the gradient of its extension to an open set included in Rk ×

∏k
j=1 Pd+1, and use the usual

projection on the tangent spaces of the sphere, and the projection defined in question 16 to project
each component to, respectively, the tangent spaces of Sk−1 and Pbr,d+1.
Let (u, (Xj)

k
j=1) ∈ M, recall that the tangent space at (u, (Xj)

k
j=1) is given by TuSk−1×

∏k
j=1 TXj

Pbr,d+1.
So, we let (v, (Vj)kj=1) ∈ TuSk−1×

∏k
j=1 TXj

Pbr,d+1 be a tangent vector at (u, (Xj)
k
j=1). We will com-

pute first Dl(u, (Xj)
k
j=1)[(v, (Vj)

k
j=1)] using the curve perspective. To do so, define the smooth curve

c(t) = (u, (Xj)
k
j=1) + t(v, (Vj)

k
j=1), we have that Dl(u, (Xj)

k
j=1)[(v, (Vj)

k
j=1)] =

d
dt (l ◦ c)|t=0.

Now, to ease the notations, we define u(t) = u+tv, so that we can write uj(t) = uj+tvj ,∀j = 1, . . . , k,
and also Xj(t) = Xj + tVj ,∀j = 1, . . . , k. We will also make an abuse of notation as we will use ⟨·, ·⟩
to denote the usual inner product on the respective spaces (i.e, for Sk−1 it is given by ⟨x, y⟩ = xty,
and for Pbr,d+1 by ⟨A,B⟩ = Tr(AB)). We also denote by ⟨·, ·⟩FR the FR-metric previously defined.
We can now start the computations :

d

dt
(l ◦ c)(t) = − d

dt

n∑
i=1

log(

k∑
j=1

uj(t)
2q(Xj(t); yi))

= −
n∑
i=1

d

dt
log(

k∑
j=1

uj(t)
2q(Xj(t); yi))

= −
n∑
i=1

∑k
j=1

d
dt (uj(t)

2q(Xj(t); yi))∑k
l=1 ul(t)

2q(Xl(t); yi)

= −
n∑
i=1

∑k
j=1 2uj(t)vjq(Xj(t); yi) + uj(t)

2 d
dt (q(Xj(t); yi))∑k

l=1 ul(t)
2q(Xl(t); yi)

Where :

d

dt
(q(Xj(t); yi)) =

√
2π exp(

1

2
)
d

dt
(p(0, Xj(t); yi))

=
√
2π exp(

1

2
)(2π)−

d+1
2
d

dt
(det(Xj(t))

− 1
2 exp(−1

2
ytiXj(t)

−1yi))

=
√
2π exp(

1

2
)(2π)−

d+1
2 (

d

dt
(det(Xj(t))

− 1
2 ) exp(−1

2
ytiXj(t)

−1yi)

+det(Xj(t))
− 1

2
d

dt
(exp(−1

2
ytiXj(t)

−1yi)))

We now compute :

d

dt
(det(Xj(t))

− 1
2 ) = −1

2
det(Xj(t))

− 3
2
d

dt
det(Xj(t))

where (the result is taken from the wikipedia page of the determinant, but it follows from the multi-
linearity of the determinant) :

d

dt
det(Xj(t)) =

d+1∑
l=1

det(Xj,1(t), . . . , Xj,l−1(t),
d

dt
Xj,l(t), Xj,l+1(t), . . . , Xj,d+1(t))

19
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where Xj,l(t) = Xj,l + tVj,l and the additional index here is used to denote the l-th column of the
corresponding matrix. It follows that :

d

dt
det(Xj(t))|t=0 =

d+1∑
l=1

det(Xj,1, . . . , Xj,l−1, Vj,l, Xj,l+1, . . . , Xj,d+1)

=⇒ d

dt
det(Xj(t))

− 1
2 |t=0 = −1

2
det(Xj)

− 1
2 det(X−1

j )

d+1∑
l=1

det(Xj,1, . . . , Xj,l−1, Vj,l, Xj,l+1, . . . , Xj,d+1)

= −1

2
det(Xj)

− 1
2

d+1∑
l=1

det(X−1
j (Xj,1, . . . , Xj,l−1, Vj,l, Xj,l+1, . . . , Xj,d+1))

= −1

2
det(Xj)

− 1
2

d+1∑
l=1

det(diag(1, . . . , 1, X−1
j,l Vj,l, 1, . . . , 1))

= −1

2
det(Xj)

− 1
2

d+1∑
l=1

X−1
j,l Vj,l

= −1

2
det(Xj)

− 1
2Tr(X−1

j Vj) = −1

2
det(Xj)

− 1
2 ⟨X−1

j , Vj⟩

where diag is used to denote a diagonal matrix, whose main diagonal is given by the vector associated
to diag. We now compute, using what we derived at the question 6:

d

dt
exp(−1

2
ytiXj(t)

−1yi) = −1

2

d

dt
(ytiXj(t)

−1yi) exp(−
1

2
ytiXj(t)

−1yi)

=
1

2
ytiXj(t)

−1 d

dt
(Xj(t))Xj(t)

−1yi exp(−
1

2
ytiXj(t)

−1yi)

=
1

2
ytiXj(t)

−1VjXj(t)
−1yi exp(−

1

2
ytiXj(t)

−1yi)

=⇒ d

dt
exp(−1

2
ytiXj(t)

−1yi)|t=0 =
1

2
ytiX

−1
j VjX

−1
j yi exp(−

1

2
ytiX

−1
j yi)

=
1

2
Tr(ytiX

−1
j VjX

−1
j yi) exp(−

1

2
ytiX

−1
j yi)

=
1

2
Tr(X−1

j VjX
−1
j yiy

t
i) exp(−

1

2
ytiX

−1
j yi)

=
1

2
⟨X−1

j VjX
−1
j , yiy

t
i⟩ exp(−

1

2
ytiX

−1
j yi)

So going all the way back to the different expressions we computed, and evaluating them at t = 0, in
the end we get :

d

dt
(l ◦ c)(0) = −

n∑
i=1

∑k
j=1 2ujvjq(Xj ; yi) +

1
2u

2
jq(Xj ; yi)(−⟨X−1

j , Vj⟩+ ⟨X−1
j VjX

−1
j , yiy

t
i⟩)∑k

l=1 u
2
l q(Xl; yi)

=

k∑
j=1

vj(−2uj

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

) +

k∑
j=1

n∑
i=1

1
2u

2
jq(Xj ; yi)(⟨X−1

j , Vj⟩ − ⟨X−1
j VjX

−1
j , yiy

t
i⟩)∑k

l=1 u
2
l q(Xl; yi)

= ⟨v,−2u⊙ w⟩+
k∑
j=1

⟨Vj ,
1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i)⟩Xj

20
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where we denote by w the vector whose entries are wj =
∑n
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

, and by identification,

we immediately get the gradient we wanted to compute at first :

(−2u⊙ w, (
1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i))

k
j=1)

But, to get the Riemannian gradient of l, the last thing we need to do is to project this expression to the
respective tangent spaces. To do so, for the first entry, we will return Proju(−2u⊙w) = (I−uut)(−2u⊙
w), and for the next k entries, namely the expressions of the form 1

2u
2
j

∑n
i=1

q(Xj ;yi)∑k
l=1 u

2
l q(Xl;yi)

(Xj−yiyti),
we will use to projection defined in question 16, therefore, we will compute for every j = 1, . . . , k :

ProjXj
(
1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i)) =

1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i)− [

1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i)]d+1,d+1XjEXj

and return for our Riemannian gradient the expression :

((I − uut)(−2u⊙ w), (ProjXj (
1

2
u2j

n∑
i=1

q(Xj ; yi)∑k
l=1 u

2
l q(Xl; yi)

(Xj − yiy
t
i)))

k
j=1)

24. We recall some useful facts of complexity theory about matrix operations. First of all, the direct
application of the mathematical definition of the product of an n ×m matrix with an m × l matrix
gives us a way to compute this matrix product in O(nml) operations. For square matrices of size
d, computing their determinant or their inverse has a cost of O(d3) operations. It can be shown
using recurrence and block matrices formulas. Knowing that, we see that for computing q(Xj ; yi) for
arbitrary i and j, the most expensive operation is either computing the determinant, or the inverse, of
Xj , which can be done in roughly O(d3), and all the other operations required are either multiplications
by some scalar, or matrix-vector multiplications which are done in, respectively, O(1) and O(d2) which
we bound by O(d3). So computing q(Xj ; yi) can be done in O(d3) operations, and computing all of
them requires O(nkd3) operations as we have to do that for every i = 1, . . . , n and j = 1, . . . , k.
Therefore, computing

∑k
l=1 u

2
l q(Xl; yi) requires O(kd3) operations ∀i = 1, . . . , n, and so computing

all of them requires O(nkd3) operations and we now have everything to compute w, which therefore
can be done in O(nkd3) operations. We know observe that we can bound the cost of computing
(ProjXj

( 12u
2
j

∑n
i=1

q(Xj ;yi)∑k
l=1 u

2
l q(Xl;yi)

(Xj − yiy
t
i)))

k
j=1 by O(nkd3), observing that once we computed w,

all the operations we do for computing each component are just matrix-matrix multiplications, done
in O(d3), vector-vector multiplications, done in O(d2) operations, matrix addition, done in O(d2)
operations, and scalar multiplication, done in O(1) operations. Now, for the expression (I−uut)(−2u⊙
w), we see that computing (−2u⊙ w) can be done in O(nkd3) operations, as computing w is clearly
the most expensive operation, and the other operations are done in O(k) or O(1) operations. Now,
for the term (I − uut), as it only consists of vector-vector multiplication and matrix addition but of
size k this time, it is done in O(k2) operations, and therefore, computing (I − uut)(−2u⊙w) is done
in O(k2 + nkd3) operations. In conclusion, computing the Riemannian gradient of f at a point in M
requires roughly O(k2 + nkd3) arithmetic operations, which can be upper bounded by O(nk2d3).

25. We implement the function in the file loglikelyhood.m, and we test it in questions.m a cell
Question25. The output on the Command Window:
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1 --- Question 25 ---
2 M.exp should ideally (but does not have to) be a function handle.
3 M.log should ideally (but does not have to) be a function handle.
4 M.pairmean should ideally (but does not have to) be a function handle.
5 Random tangent vector norm: 1 (should be 1).
6 norm(v - v)_x = 0 (should be 0).
7 <u, v>_x = -0.0832719, <v, u>_x = -0.0832719, difference = -4.16334e-17 (should ...

be 0).
8 <au+bv, z>_x = -0.031316, a<u, z>_x + b<v, z>_x = -0.031316, difference = ...

-4.16334e-17 (should be 0).
9 Norm of tangent vector minus its projection to tangent space: 0 (should be zero).

10 Couldn't check exp and dist.
11 Unless otherwise stated, M.vec seems to return real column vectors, as intended.
12 Checking mat/vec are inverse pairs: 0, 0 (should be two zeros).
13 Checking if vec is linear: 0 (should be zero).
14 M.vecmatareisometries says false.
15 If true, this should be zero: -0.018449.
16 Testing M.dim() (works best when dimension is small):
17 If this number is machine-precision zero, then M.dim() may be too large: ...

0.00107348
18 If this number is not machine-precision zero, then M.dim() may be too small: ...

5.19833e-16
19 It is recommended also to call checkretraction.
20 The slope should be 2. It appears to be: 2.00012.
21 If it is far from 2, then directional derivatives might be erroneous.
22 The residual should be 0, or very close. Residual: 7.94411e-15.
23 If it is far from 0, then the gradient is not in the tangent space.
24 In certain cases (e.g., hyperbolicfactory), the tangency test is inconclusive.

and we also give in Figure 1 the plot returnend by checkgradient.
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Figure 1: Plot returned by the function checkgradient
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2 Generating Data

3 Algorithms

3.1 A performance measure
26. We start by showing that the Hellinger distance is always between 0 and 1. To do so, consider
some arbitrary (µ1,Σ1), (µ2,Σ2) ∈ Rd × Pd. Our first observation is that Σ1/2 ∈ Pd since both Σ1

and Σ2 are symmetric positive-definite. It follows that Σ−1
1/2 ∈ Pd and det(Σ1/2) is non-negative.

So we see that the expression
det(Σ1)

1/4 det(Σ2)
1/4

det(Σ1/2)1/2
exp(− 1

8 (µ1 − µ2)
tΣ−1

1/2(µ1 − µ2)) is always non-

negative. Since H is a distance that we assume to be well-defined for every (µ1,Σ1), (µ2,Σ2) ∈

Rd × Pd, it has to be that 1 − det(Σ1)
1/4 det(Σ2)

1/4

det(Σ1/2)1/2
exp(− 1

8 (µ1 − µ2)
tΣ−1

1/2(µ1 − µ2)) ≥ 0 =⇒ 0 ≤

det(Σ1)
1/4 det(Σ2)

1/4

det(Σ1/2)1/2
exp(− 1

8 (µ1 − µ2)
tΣ−1

1/2(µ1 − µ2)) ≤ 1, and it follows that the Helliger distance

is always between 0 and 1.
So, if we consider arbitrary parameters Θ = (w, (µj ,Σj)

k
j=1) and some arbitrary ground truth Θ∗ =

(w∗, (µ∗
j ,Σ

∗
j )
k
j=1), we first observe that Err(Θ,Θ∗) ≥ 0 as we only sum positive terms, whatever

permutation we consider. Now to see that Err(Θ,Θ∗) ≤ 2, we use the fact we showed for the
Hellinger distance and see that for any permutation σ ∈ S(k) we have:

k∑
j=1

(w∗
jH((µσ(j),Σσ(j)), (µ

∗
j ,Σ

∗
j )) +

1

2
|wσ(j) − w∗

j |) ≤
k∑
j=1

(w∗
j +

1

2
|wσ(j) − w∗

j |)

≤
k∑
j=1

(w∗
j +

1

2
(|wσ(j)|+ |w∗

j |))

=

k∑
j=1

w∗
j +

1

2

k∑
j=1

wσ(j) +
1

2

k∑
j=1

w∗
j

= 1 +
1

2
+

1

2
= 2

27. If Err(Θ,Θ∗) = 0 then it does not necessarily imply that Θ = Θ∗. To illustrate this, we provide
an example for the case k = 2. Consider a ground truth Θ∗ = (w∗, (µ∗

1,Σ
∗
1), (µ

∗
2,Σ

∗
2)), and define

the parameters Θ = (w, (µ1,Σ1), (µ2,Σ2)), where w1 = w∗
2 , w2 = w∗

1 , µ1 = µ∗
2, µ2 = µ∗

1, Σ1 = Σ∗
2

and Σ2 = Σ∗
1. Clearly, except for few special cases, we have that Θ ̸= Θ∗, but if we consider the

permutation σ = (12), we have that :

2∑
j=1

(w∗
jH((µσ(j),Σσ(j)), (µ

∗
j ,Σ

∗
j )) +

1

2
|wσ(j) − w∗

j |) =
2∑
j=1

(w∗
jH((µ∗

j ,Σ
∗
j ), (µ

∗
j ,Σ

∗
j )) +

1

2
|w∗
j − w∗

j |) = 0

Showing that Err(Θ,Θ∗) = 0.
We can generalize this result and see that if Err(Θ,Θ∗) = 0, most of the time it implies that the
estimated parameters are essentially the same as the ground truth, but up to a permutation of its
entries, i.e P (Θ, ·) = P (Θ∗, ·) .
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28. The function Err is implemented in Err.m, and is tested in questions.m at cell Question 28.
The output on the Command Window is:

1 Question 28
2 Computation of the total variation distance
3 First example
4 true : 0.4467
5 computed : 0.446651
6 Second example
7 true : 1.1228
8 computed : 1.122767

3.2 Riemannian gradient descent
29. The Riemannian gradient descent is implemented in RGD.m, and is tested in questions.m at
cell Question 29. We give the output on the Command Window for a toy test we did to check if
correctly implemented RGD:

1 Question 29
2 iter: 918
3 gradnorm: 0.0021
4 time: 47.3291
5 cost: 328.4698
6 alpha: 0.0039

3.3 Riemannian conjugate gradient descent
30. See the code given with the report for the implementations.

3.4 Experiments
31. We give in Figure 2 and 3 the plots asked for this question (we used 1000 samples for this
question). What we observe is that both methods tend to converge to the same optimal solution,
but CGD does it in a significantly smaller number of iterations (RGD does around 4 times more
iterations compared to CGD). We additionally observe that CGD terminates because the gradient
norm goes below the tolerance, meanwhile RGD terminates because it ran longer than the maximum
time allowed.

1 --- Question 31 ---
2 Average running times with k=1, d=2, n=1000, tolgradnorm=0.001000 :
3 riemanian GD : 10.071422 +- 0.046414
4 congugated GD : 0.439973 +- 0.098148
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Figure 2: Plots of the norm of the gradient (left) and the negative log likelihood (right) as functions
of the iteration number for both RGD and RCG
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Figure 3: Scatterplot of the data points and the solution found by the algorithm (orange ellipsoid)
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0

32. Output on the Command Window:

1 --- Question 32 ---
2 Average running times with k=2, d=2, n=1000, tolgradnorm=0.001000 :
3 riemanian GD : 9.268081 +- 1.953445
4 congugated GD : 6.454152 +- 1.682247

Due to lack of time we were not able to run all the experiments asked, so we give here the plots for
the experiment we were able to do. Note that we run our algorithms for 1000 data points. What we
see is that CGD tends to perform better in precision and in running time than RGD. Empirically, the
time to compute each iteration should be quadratic in k, if we recall that the cost of computing the
gradient is roughly O(nk2d3). We also noticed during our tests that many times, we were not able to
find clusters, and got a message telling us that it was due to the fact that covariance matrices were
not positive definite. Figure 6 was created out of one of these cases. It seems that our algorithms can
converge to a point that lies outside of our manifolds. We were not able to determine if it comes from
our code, or if it is something that can happen when optimizing over manifolds.
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Figure 4: Plots of the norm of the gradient (left) and the negative log likelihood (right) as functions
of the iteration number for both RGD and RCG for k = 2
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Figure 5: Plots of the norm of the gradient (left) and the negative log likelihood (right) as functions
of the iteration number for both RGD and RCG for k = 5
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Figure 6: Scatterplot of the data points and the solution found by the algorithm (orange ellipsoid) for
k = 2
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33. Output on the Command Window:

1 --- Question 33 ---
2 c)
3 iter 1/10
4 iter 2/10
5 iter 3/10
6 iter 4/10
7 iter 5/10
8 iter 6/10
9 iter 7/10

10 iter 8/10
11 iter 9/10
12 iter 10/10
13 Average running times with k=2, d=5, n=1000, tolgradnorm=0.001000 :
14 riemanian GD : 9.587538 +- 1.773939
15 congugated GD : 7.593906 +- 3.984803
16 g)
17 iter 1/30
18 Unrecognized field name "w".
19 Error in Err>Errp (line 16)

Due to lack of time we were not able to conduct these experiments, and therefore we can’t really say
anything about it. But, we could guess that augmenting d should augment the running time, and we
also suspect that it could have some impact on the precision for large enough values of d, as we think
about the "curse of dimensionality", an issue that very often occurs when doing Machine Learning.

34. We recall again that the cost of computing the gradient is roughly O(nk2d3), therefore we can
expect the time to scale at a power of 3 with d. Unfortunately we were not able to conduct these
experiments properly.

35.

3.5 A comparison between different geometries on Rd × Pd

36. We recall that the metric on Rd is given by : ⟨u, v⟩x = utv,∀(x, u), (x, v) ∈ Rd × Rd, and the
metric on Pd be given by ⟨A,B⟩X = Tr(X−1AX−1B),∀(X,A), (X,B) ∈ Pd × Symd. Now, using the
problem in the exercise session about product Riemannian metric, we have that the metric metric on
M = Rd × Pd is given by :

⟨Θ̇1, Θ̇2⟩Θ = Tr(Σ−1Σ̇1Σ
−1Σ̇2) + µ̇t1µ̇2

where Θ = (µ,Σ) ∈ Rd × Pd, and Θ̇i = (µ̇i, Σ̇i) ∈ TΘM = Rd × Symd. The only difference with
the FR metric we previously defined is that here we have a component of the form µ̇t1µ̇2 instead of
2µ̇t1Σ

−1µ̇2, suggesting that in the FR metric we used a different inner product on Rd. We assume that
this difference will have an impact when we will run the Riemannian nonlinear conjugate gradient
algorithm in question 38.

37. Our cost function is defined by l(u, (µj ,Σj)kj=1) = −
∑n
i=1 log(

∑k
j=1 u

2
jpd(µj ,Σj ;xi)) for (u, (µj ,Σj)kj=1) ∈

Sk−1 ×
∏k
j=1(Rd × Pd). We will follow the same steps as for question 23. Due to lack of time, some

steps of the computation are omitted, but when they do it is because they are analogous to what
has been done in question 23. We let (v, (µ̇j , Σ̇j)

k
j=1) ∈ TuSk−1 ×

∏k
j=1(Rd × Symd) and define the
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smooth curve c(t) = (u, (µj ,Σj)
k
j=1)+ t(v, (µ̇j , Σ̇j)

k
j=1), and define to ease the notations u(t) = u+ tv,

uj = uj + tvj ,∀j = 1, . . . , k, µj(t) = µj + tµ̇j ,∀j = 1, . . . , k and Σj(t) = Σj + tΣ̇j ,∀j = 1, . . . , k. We
now have that :

d

dt
(l ◦ c)(t) = −

n∑
i=1

∑k
j=1 2uj(t)vjpd(µj(t),Σj(t);xi) + uj(t)

2 d
dt (pd(µj(t),Σj(t);xi))∑k

l=1 ul(t)
2pd(µj(t),Σj(t);xi)

We now compute :

d

dt
(pd(µj(t),Σj(t);xi)) = (2π)−

d
2 (
d

dt
(det(Σj(t))

− 1
2 ) exp(−1

2
(xi − µj(t))

tΣj(t)
−1(xi − µj(t)))

+det(Σj(t))
− 1

2
d

dt
(exp(−1

2
(xi − µj(t))

tΣj(t)
−1(xi − µj(t))))

Now, following the exact same steps as in question 23 we immediately get that :

d

dt
(det(Σj(t))

− 1
2 )|t=0 = −1

2
det(Σj)

−1/2Tr(Σ−1
j Σ̇j)

Now, to differentiate the exponential, we will basically follow what has been done in question 23, with
the exception that we will use the product rule. We skip the details of the computation, as they are
tedious, and immediately give the result evaluated at t = 0 :

d

dt
(exp(−1

2
(xi − µj(t))

tΣj(t)
−1(xi − µj(t))))|t=0 = −1

2
(−(xi − µj)

tΣ−1
j Σ̇jΣ

−1
j (xi − µj)+

2µ̇tjΣ
−1
j (µj − xi)) exp(−

1

2
(xi − µj)

tΣ−1
j (xi − µj))

We then obtain, after evaluating to t = 0 and reformulating the obtained expression to make the inner
product on Rd and the FR metric appear :

d

dt
(pd(µj(t),Σj(t);xi))|t=0 = pd(µj ,Σj ;xi)(−

1

2
⟨Σ̇j ,Σj − (xi − µj)(xi − µj)

t⟩Σj − ⟨µ̇j ,Σ−1
j (µj − xi)⟩)

Now, when we plug it in the primary expression we wanted to compute, and evaluate to t = 0, after
many simplifications we get to the following expression (where ⟨·, ·⟩Rd×Pd

is the metric we defined in
the previous question, and ⟨·, ·⟩ is the regular inner product on Rd):

d

dt
(l ◦ c)(0) = ⟨v,−2u⊙ w⟩+

k∑
j=1

⟨(µ̇j , Σ̇j),
u2j
2

n∑
i=1

pd(µj ,Σj ;xi)∑k
l=1 u

2
l pd(µl,Σl;xi)

(2Σ−1
j (µj − xi),Σj − (xi − µj)(xi − µj)

t)⟩Rd×Pd

where we denote by w the vector whose entries are wj =
∑n
i=1

pd(µj ,Σj ;xi)∑k
l=1 u

2
l pd(µl,Σl;xi)

, and by identifi-

cation, we immediately get the gradient we wanted to compute at first :

((I − uut)(−2u⊙ w), (
u2j
2

n∑
i=1

pd(µj ,Σj ;xi)∑k
l=1 u

2
l pd(µl,Σl;xi)

(2Σ−1
j (µj − xi),Σj − (xi − µj)(xi − µj)

t))kj=1)

where we only projected the first component to the right tangent space, because we observe that all
the other k components of the form u2

j

2

∑n
i=1

pd(µj ,Σj ;xi)∑k
l=1 u

2
l pd(µl,Σl;xi)

(2Σ−1
j (µj−xi),Σj−(xi−µj)(xi−µj)t)

are already in their respective tangent spaces.
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38.

3.6 Incorporating additional information
39. If we know a priori that the mean vectors µ∗

j of all the Gaussians lie on a given embedded
submanifold of Rd, call it N , we could try to exploit the geometric properties of N , that is, give it a
riemannian metric and instead of solving the optimization problem (MLE4) on Sk−1×

∏k
j=1(Rd×Pd),

we would solve it on Sk−1×
∏k
j=1(N×Pd) (note that the expression for the gradient of the cost function

may differ from what we computed in question 37). Knowing this additional geometric constraint,
it could possibly be that when we run our optimization algorithms on this new formulation of the
problem, we would gain in efficiency or/and precision.
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