
Optimization on Manifolds:
Estimating rotations

from relative measurements
Thomas RENARD, Benoît MÜLLER

EPFL – MATH-512 – Project 2

May 2023

1 Application description and warm-up problems
1.

If no anchor is provided, we know the "relative position" but not the "absolute position" in the space:
without noise, we could pre-compose every rotation by an arbitrary rotation and have the exact same
relative rotations:

∀R ∈ SO(d), (RiR)(RjR)⊤ = RiRR⊤R⊤
j = RiR

⊤
j = Hij .

2.

Only one anchor is needed. The neighborhood of a known rotation can be computed since RiR
⊤
j = Hij

if and only if Ri = HijRj . Repeating this process from the anchor to the rest of the graph allows to
compute the rotations since the graph is connected.

3.

We show how to concretely apply last point. We use a depth/breath-first search (DFS/BFS) to explore
the graph, knowing that its complexity is O(|V |+ |E|).
Algorithm 1: Noiseless with anchor
Input : G = (V,E), measurements (Hij)(i,j)∈E , and anchors (Rj)j∈J

Output: Rotations (Ri)i∈V

1 Choose an a ∈ J
2 Do a DFS or BFS of G starting at a
3 for all search tree edges (i, j) in order of appearance, do
4 Ri = HijRj

5 end for
6 return (Ri)i∈V

If there is noise, the computation done in the loop cannot be done like this since we have randomness
and we don’t know Zij . In other words, we cannot solve the problem locally edge by edge but need

1

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

to consider the whole graph and compare all measurements to estimate the rotations that gives the
most likely noise.

4.

Recall that M = {X ∈ SO(d)m|Xj = Rj ∀j ∈ J}, so by defining

Mi =

{
{Ri} if i ∈ J

SO(d) else
,

we can write M =
∏m

i=1 Mi. Then we notice that M is compact, considered as the product topology
of compact spaces. Indeed, the singletons {Ri} are compact and SO(d) is compact because bounded
and closed:

This last fact can be shown by using the fact that the maps A 7→ det(A) − 1, A 7→ AA⊤ − Id,
and A 7→ A⊤A − Id are continuous in the matrices space, so pre-images of {0} are closed, as well as
their intersection SO(d). The boundedness comes from the fact that ∥R∥2 = Tr(RR⊤) = Tr(Id) = d.
All functions used in the log-likelyhood are continuous, so we apply the extreme value theorem to
conclude the existence of a global maximizer.

We bound the log-likelyhood by using the mode Id of p and the monotonicity of the logarithm:∑
i,j∈E

log(p(X⊤
i HijXj)) ≤

∑
i,j∈E

log(p(Id)) = |E| log(p(Id))

with equality only if X⊤
i HijXj = Id. If there is no noise, we have equality with the true rotations.

If there is no anchor neither, we can also have the solution with shifted rotations as it was showed in
Question 1 so the maximizer is not unique.

5.

Recall that we have written M =
∏m

i=1 Mi and the metric induced by the usual scalar product is
indeed the product metric, so we can use results about product of manifolds.

Let’s study SO(d). We can define it locally with the smooth map{
h : Rd×d 7→ Sym(d)

X → X⊤X − Id.

Indeed, if X ∈ SO(d), then it is invertible with inverse X⊤, so its determinant is positive, and it stay
positive locally in the space of matrices thanks to the continuity of the determinant. As a result, for
an invertible matrix Y in this neighborhood, h(Y) = 0 imply Y −1 = Y ⊤ and XX⊤ = Ip is also true.
We know then that det(Y) ∈ {−1, 1} and since it have stayed positive, it is 1, so Y ∈ SO(d).

We compute the directional derivative in a direction matrix U :

Dh(X)[U] = X⊤U + U⊤X = X⊤U + (X⊤U)⊤.

This equal zero if and only if X⊤U is a skew matrix of Skew(d). We can write this more simply if
we parameterize U = XΩ. We get 0 = X⊤XΩ + (X⊤XΩ)⊤ = Ω + Ω⊤, so the condition becomes
Ω ∈ Skew(d) and we have

TX SO(d) = kerDh(X) = X Skew(d) = {XΩ ∈ Rd×d|Ω ∈ Skew(d)}.

2

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

Now we see that Dh(X) as full rank since for any symmetric Y, Dh(X)[1/2XY] = 1/2X⊤XY +
1/2(X⊤XY)⊤ = 1/2Y + 1/2Y ⊤ = Y . The dimension of Sym(d) is d(d − 1)/2, so the dimension of
the manifold SO(d) is d2 − d(d− 1)/2 = d(d+ 1)/2.

Finally, the singletons {Rj} are just trivial 0-dimensional manifolds with tangent null spaces
TRj

{Rj} = {0}, so M =
∏m

i=1 Mi has tangent spaces

TXM =

m∏
i=1

TXi
Mi = {U ∈ SO(d)m|Ui ∈ Xi Skew(d) for i /∈ J and Ui = 0 else},

and is of dimension the sum of all dimensions
∑

j∈J d(d+ 1)/2 = |J |d(d+ 1)/2.

6.

The orthogonal projection into a product of linear subspaces is the product of the projections, i.e.

ProjTXM(U) = (ProjTXi
Mi

(Ui))
m
i=1.

For the trivial manifolds {Rj} the projection to the null tangent space is the null linear map Proj{0} ≡
0. For the manifolds SO(d) we assert that the projection ProjXi Skew(d) : Rd×d → Xi Skew(d) is

ProjXi Skew(d)(Ui) = (Ui −XU⊤
i X)/2.

One can easily check that it is well defined and satisfy the orthogonality equation but let us show a
constructive way to find the formula. The key is to first understand that Skew(d) is the complementary
space of Sym(d):

∀(Ω, S) ∈ Skew(d)× Sym(d), ⟨Ω, S⟩ = Tr(ΩS⊤) = Tr(ΩS) = Tr((ΩS)⊤)

= Tr(S⊤Ω⊤) = −Tr(SΩ) = −Tr(ΩS)

= −⟨Ω, S⟩,

implies orthogonality. The dimensions d(d − 1)/2 and d(d + 1)/2 adding up to d2, we get indeed
Rd×d = Skew(d)⊕ Sym(d) and

ProjSkew(d)(Ui) = Ui − ProjSym(d)(Ui) = Ui − (Ui + U⊤
i)/2 =

Ui − U⊤
i

2
.

Then that since the multiplication by Xi is an isometry we compute

ProjXi Skew(d)(Ui) = ProjXi Skew(d)(XiX
⊤
i Ui) = XiProjSkew(d)(X

⊤
i Ui) = Xi

X⊤
i Ui − (X⊤

i Ui)
⊤

2

=
Ui −XiU

⊤
i Xi

2
.

7.

We start by defining a second order retraction on SO(d). To do so, observe first that SO(d) is one (of
the two) connected component of O(d) (the orthogonal group), and therefore all the tools we develop
on O(d) apply just as well to SO(d). Indeed, it is clear that retractions on O(d) yield retractions
on SO(d) since, being smooth, they cannot leave a connected component. We already defined a first
order retraction on O(d) (see exercise section 3), which is the map RX : T SO(d) → SO(d) defined by
RX(V) = UW⊤, where we use the singular value decomposition X+V = UΣW⊤. We already showed

3

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

in this exercise session that it is indeed a retraction, and that it has a useful equivalent expression
RX(V) = (X + V)(Id + V ⊤V)−1/2.
Therefore, by the previous argument, one has the following first order retraction for SO(d), which
is the map RX : T O(d) → O(d) defined by RX(V) = UW⊤, where we again used the singular
value decomposition X + V = UΣW⊤. We also similarly have the equivalent expression RX(V) =
(X + V)(Id + V ⊤V)−1/2.
We still need to show that it is also a second order retraction. To do so, recall from the exercise session
that RX(V) is the unique metric projection of X + V to O(d) (hence the restriction to SO(d)), that
is, Y = RX(V) is the unique solution of minY ∈SO(d)∥X+V −Y ∥2, and therefore, by Proposition 5.55
from the text book, it induces a second order retraction on SO(d), namely, R.
Now, the natural retractions on the singletons {Rj}, j ∈ J is the map that send 0, the only vector in
the tangent spaces, to the respective Rj , which are clearly second order retractions.
So, the retraction we suggest for M is the map R : T M → M that send any (X,V) ∈ T M to
RX(V) = (RX1

(V1), RX2
(V2), . . . , RXm

(Vm)), where RXi
(Vi) = Ri whenever i ∈ J , and RXi

(Vi) =
(Xi + Vi)(Id + V ⊤

i Vi)
−1/2 whenever i /∈ J , which is a second order retraction as every component is a

second order retraction.

8.

Assume that p = pκ. For every X ∈ M, we explicitly compute :

f(X) =
∑

{i,j}∈E

log(pκ(X
⊤
i HijXj))

=
∑

{i,j}∈E

log(
1

cd(κ)
eκTr(X⊤

i HijXj)

=
∑

{i,j}∈E

(log(
1

cd(κ)
+ κTr(X⊤

i HijXj))

and since κ ≥ 0, finding X̂MLE ∈ argmaxX∈M f(X) is equivalent to finding X̂ ∈ argmaxX∈M(
∑

{i,j}∈E Tr(X⊤
i HijXj)).

We now see that :

∥HijXj −Xi∥2F = Tr((HijXj −Xi)
⊤(HijXj −Xi))

= Tr(X⊤
j H⊤

ijHijXj −X⊤
j H⊤

ijXi −X⊤
i HijXj +X⊤

i Xi)

= Tr(−2X⊤
i HijXj + 2Id)

= −2Tr(X⊤
i HijXj) + 2d

Where we used the facts that Xj , Xi and Hij ∈ SO(d) for every {i, j} ∈ E.
So, in conclusion, finding X̂ ∈ argminX∈M

∑
{i,j}∈E∥HijXj−Xi∥2F = argminX∈M

∑
{i,j}∈E(−2Tr(X⊤

i HijXj)+

2d) is equivalent to finding X̂ ∈ argmaxX∈M
∑

{i,j}∈E Tr(X⊤
i HijXj), which is equivalent to finding

X̂MLE ∈ argmaxX∈M f(X).

2 Manifold factory, gradients and Hessians
9.

We decide to store X so that it is compatible with the manopt[1] toolbox and in particular with
rotationsfactory.m which implement the manifold SO(d)m. The variable stores only the un-

4

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

anchored part of X and is then a 3D tensor of size d× d× (m−ma) with ma = |J |. To minimize the
necessary number of computations and keep the format of tangent vectors in rotationsfactory.m,
we store only the skew part of tangent vector and will use it as inputs and outputs of functions inside
the manifold. The dimension of (mud) (and SO(d)) is d(d+ 1)/2 due to the repetition of values, but
we store the skew part of tangent vectors as a normal matrix with memory d2 (same for rotations)
so the total memory is (m − ma)d

2 ∈ Om,d(md2). Notice that since the rotations will be mainly of
dimension 3, the un-optimal storage of them won’t be significant in contrast with m.

10.

We implement the manifold in manyrotationsfactory.m 1, where we represent the manifold as
rotationsfactory(d, m - m_a). We decide to use this manifold factory because this manifold is
actually the same, up to take off the trivial dimensions which is a isometry. Like this we don’t have to
go inside the internal functionment of manopt, and we avoid having to debug our manifold. Instead,
the changes between representation with or without anchor are all made in the problem structure
itself. We take the convention to always take anchors in the first indices, so that J = {1, . . . ,ma}. The
projection implemented by manyrotationsfactory is the same we defined, so we use it. The projector
we defined is also implemented as retr_polar so we use it. We define a function add_anchors that
add the anchor values to a point when needed, and a function add_zeros to add the zeros to tangent
vectors corresponding to the anchors dimensions.

11.

The functions M.rand(), M.randvec(), M.zerovec(), M.lincomb(), M.tangent() are all al-
ready defined in manyrotationsfactory so we don’t rewrite them.

12.

The scalar product define in manyrotationsfactory is the same as we need, so we don’t rewrite it.

13.

Let (X,U) be an element of TM. We recall that f(X) =
∑

{i,j}∈E(log ◦p)(X⊤
i HijXj), so let us

compute Df by using the composition rule on log ◦p and the product rule on X⊤
i HijXj :

Df(X)[U] =
∑

{i,j}∈E

p(X⊤
i HijXj)

−1Dp(X⊤
i HijXj)[U

⊤
i HijXj +X⊤

i HijUj]

Suppose p = pκ1,κ2,q , then Dp = qDpκ1
+ (1− q)Dpκ2

, so we compute for any (Z, V) in TSO(d) that

Dpκ(Z)[V] = κpκ(Z) Tr(V).

1the code can be found in the GitHub repository opti-manifolds-rotations-estimation[3]

5

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

giving Dpκ1,κ2,q(Z)[V] =
(
qκ1pκ1(Z) + (1 − q)κ2pκ2(Z)

)
Tr(V). We use this in the formula for Df

and get

Df(X)[U] =
∑

{i,j}∈E

p(X⊤
i HijXj)

−1
(
qκ1pκ1

(X⊤
i HijXj) + (1− q)κ2pκ2

(X⊤
i HijXj)

)
Tr(U⊤

i HijXj +X⊤
i HijUj)

=
∑

{i,j}∈E

qκ1pκ1
(X⊤

i HijXj) + (1− q)κ2pκ2
(X⊤

i HijXj)

p(X⊤
i HijXj)

Tr(U⊤
i HijXj + U⊤

j H⊤
ijXi)

=
∑

{i,j}∈E

Pij(⟨HijXj , Ui⟩+ ⟨HjiXi, Uj⟩) with Pij =
qκ1pκ1

(X⊤
i HijXj) + (1− q)κ2pκ2

(X⊤
i HijXj)

p(X⊤
i HijXj)

=
∑
i∈V

∑
j:{i,j}∈E

Pij⟨HijXj , Ui⟩

=
∑
i∈V

〈 ∑
j:{i,j}∈E

PijHijXj , Ui

〉

=

〈(∑
j:{i,j}∈E

PijHijXj

)
i∈V

, U

〉
X

.

By identification,

∇f(X) =

(∑
j:{i,j}∈E

PijHijXj

)
i∈V

,

and we can project it to the tangent space to obtain the Riemannian gradient. We do it component
by component using Question 6:

gradf(X)i = ProjXi
∇f(X)i = Xi Skew(X

⊤
i ∇f(X)i) = Xi Skew

(∑
j:{i,j}∈E

PijX
⊤
i HijXj

)

if i /∈ J . Else, gradf(X)i = 0.
When p = pκ = pκ,0,0, we get that Pij = κ and

gradf(X)i = κXi Skew

(∑
j:{i,j}∈E

X⊤
i HijXj

)

14.

Let (X,U) ∈ T M. For every i, j ∈ V we define Zij = X⊤
i HijXj . Note that we redefine some notation

from the previous question i.e Pij := P (Zij) =
qκ1pκ1

(Zij)+(1−q)κ2pκ2
(Zij)

p(Zij)
.

Now, for unanchored node, i.e i /∈ J , we define the map gradif : (Rd×d)m → Rd×d by gradif(X) =
Xi

∑
j:{i,j}∈E Pij Skew(Zij). We know that the restriction of gradif to M yields the i-th component

of the gradient of f by the previous question. Therefore, the i-th component of the Hessian of f at
X applied to the tangent vector U = XΩ, where Ω = (Ω1, . . . ,Ωm) with Ωi ∈ Skew(d) for every
i /∈ J and Ωi = 0 otherwise, is given by Hessif(X)[XΩ] = Xi Skew(X

⊤
i Dgradif(X)[XΩ]), since

Hessf(X)[U] = ∇ugradf = ProjX(Dgradf(X)[U]), where ∇u is the unique Riemannian connection
on M, and gradf is an extension of the gradient of f to the linear space (Rd×d)m.
We now want to explicitly compute X⊤

i Dgradif(X)[XΩ] for unanchored nodes i. Using the product

6

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

rule and the linearity of the derivation we get :

X⊤
i Dgradif(X)[XΩ] = X⊤

i

∑
j:{i,j}∈E

D(X 7→ XiP (Zij) Skew(Zij))[XΩ]

= X⊤
i

∑
j:{i,j}∈E

D(X 7→ Xi)[XΩ]P (Zij) Skew(Zij) +XiD(X 7→ P (Zij) Skew(Zij))[XΩ]

=
∑

j:{i,j}∈E

X⊤
i D(X 7→ Xi)[XΩ]P (Zij) Skew(Zij) +D(X 7→ P (Zij))[XΩ] Skew(Zij)

+ P (Zij)D(X 7→ Skew(Zij))[XΩ]

We now compute the 3 different derivatives :

D(X 7→ Xi)[XΩ] = lim
t→0

1

t
(Xi + tXiΩi −Xi)

= XiΩi

and then, using the composition rule :

D(X 7→ Skew(Zij))[XΩ] = D Skew(Zij)[D(X 7→ Zij)[XΩ]]

where :

D(X 7→ Zij)[XΩ] = lim
t→0

1

t
((Xi + tXiΩi)

⊤Hij(Xj + tXjΩj)−X⊤
i HijXj)

= lim
t→0

1

t
(tΩ⊤

i X
⊤
i HijXj + tX⊤

i HijXjΩj + t2Ω⊤
i X

⊤
i HijXjΩj)

= Ω⊤
i X

⊤
i HijXj +X⊤

i HijXjΩj

= ZijΩj − ΩiZij =: Ωij

So now, we get :

D(X 7→ Skew(Zij))[XΩ] = D Skew(Zij)[Ωij]

= lim
t→0

1

t
(Skew(Zij + tΩij)− Skew(Zij))

= Skew(Ωij)

Finally, we compute :

D(X 7→ P (Zij))[XΩ] = DP (Zij)[Ωij]

and now, using again the product rule and the definition of P (Zij), we have:

DP (Zij)[Ωij] = D(Zij 7→ qκ1pκ1(Zij) + (1− q)κ2p2(Zij))[Ωij]
1

p(Zij)

+ (qκ1pκ1
(Zij) + (1− q)κ2p2(Zij))D(Zij 7→

1

p(Zij)
)[Ωij]

Now we get :

D(Zij 7→ qκ1pκ1
(Zij) + (1− q)κ2p2(Zij))[Ωij] = qκ1Dpκ1

(Zij)[Ωij] + (1− q)κ2Dpκ2
(Zij)[Ωij]

= qκ2
1pκ1

(Zij)Tr(Ωij) + (1− q)κ2
2pκ2

(Zij)Tr(Ωij)

= (qκ2
1pκ1(Zij) + (1− q)κ2

2pκ2(Zij))Tr(Ωij)

7

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

and for the second derivative, we define F : R∗ → R∗ by F (x) = 1
x , so that we can use the chain rule:

D(Zij 7→
1

p(Zij)
)[Ωij] = DF ◦ p(Zij)[Ωij]

= DF (p(Zij)[Dp(Zij)[Ωij]]

= DF (p(Zij)[(qκ1pκ1
(Zij) + (1− q)κ2pκ2

(Zij))Tr(Ωij)]

= −qκ1pκ1(Zij) + (1− q)κ2pκ2(Zij)

p(Zij)2
Tr(Ωij)

and combining these two results together yield :

DP (Zij)[Ωij] = (
qκ2

1pκ1(Zij) + (1− q)κ2
2pκ2(Zij)

p(Zij)
− P (Zij)

2)Tr(Ωij)

and finally, we get :

X⊤
i Dgradif(X)[XΩ] =

∑
j:{i,j}∈E

ΩiP (Zij) Skew(Zij)

+ (
qκ2

1pκ1(Zij) + (1− q)κ2
2pκ2(Zij)

p(Zij)
− P (Zij)

2)Tr(Ωij) Skew(Zij) + P (Zij) Skew(Zij)

=⇒ Hessif(X)[XΩ] = XiSkew

(∑
j:{i,j}∈E

(
ΩiP (Zij) Skew(Zij)

+ (
qκ2

1pκ1(Zij) + (1− q)κ2
2pκ2(Zij)

p(Zij)
− P (Zij)

2)Tr(Ωij) Skew(Zij)

+ P (Zij) Skew(Ωij)
))

Finally, observe that for i ∈ J , the i-th component of the Hessian simply vanishes.

15.

Recall that the formula of the gradient is

gradf(X)i = ProjXi
∇f(X)i = Xi Skew(X

⊤
i ∇f(X)i) = Xi Skew

(∑
j:{i,j}∈E

PijX
⊤
i HijXj

)

for indices i outside of J . To compute the products Zij = X⊤
i HijXj we need |E|2d3 (plus |E|2d3

additions). This is done by

Z = pagemtimes(X(:,:,data.I),'transpose', data.H,'none'); Z = pagemtimes(Z, X(:,:,data.J));

The we compute the fraction P by first computing etzij = eTrZij (so that we minimize the computa-
tions) which takes |E| (plus d|E| additions). The expression of the fraction is then (q*k1/c1 * ...

etz.^k1 + (1-q)*k2/c2 * etz.^k2)/(q/c1 * etz.^k1 + (1-q)/c2 * etz.^k2) and takes 14|E|
operations (4|E| additions). The multiplication between P and Z is done in d2|E| (and the sums takes
less than 2d2|E| additions). At then end, taking the skew part involve d2|E| arithmetic operations
(d2|E| additions).

We sum up everything and get
|E|(2d3 + 2d2 + 15)

8

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

operations (and |E|(2d3 + 3d2 + d+ 4) additions), so

|E|(4d3 + 5d2 + d+ 19)

if we count additions. For d = 3, this is 175|E|.
The formula of the Hessian is just over there in Question 14. Again, computing Z takes |E|2d3

(plus |E|2d3 additions) and computing etz take |E| (plus d|E| additions). Using this variable, P takes
14|E| operations (4|E| additions) and the fraction in the second term takes 16|E| operations (4|E|
additions). The matrix Ωij = ZijΩj − ΩiZij takes |E|2d3 (|E|4d3 + d2), taking the trace takes |E|d
additions. Computing skew(Zij) takes d2|E| arithmetic operations (d2|E| additions). Lets compute
the compelexity of each internal terms. The first takes |E|(d2 + d3)(|E|d3 additions) the second
|E|(2 + d2) (|E| additions), and the last takes |E|d2 operations. Computing the big sums takes less
than d2|E| additions, and the mutakesd2|E| arithmetic operations (d2|E| additions).

We sum everything and get |E|(5d3 + 5d2 + 33) (and |E|(7d3 + 3d2 + 2d+ 1)) so

|E|(12d3 + 8d2 + 2d+ 34)

in total with additions. For d = 3, this is 436|E|, so approximately 2.5 times more than gradient.
The trick is that we don’t actually compute the Hesssian, but only its evaluation as a linear map for
a certain entry. To compute the value of the Hessian like if it was a classic matrix Hessian, it would
need to compute Hessif(X)[XΩ(b)] for the ||d(d− 1)/2

16.

We implement the cost in cost.m and the riemanian gradient in grad.m, and the riemanian hessian
in hessian.m. We also impement a function that compute the cost and the gradient together to avoid
computing things multiple times. This is done in costgrad.m. We build some data and problem
structre and use the manopt debugging functions checkgradient and checkhessian and obtain the
plot in Figure [1]. This run and all running parts are done in the file main.m with cells runnable
separately.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

h

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gradient check.

The slope of the continuous line should match that of the dashed

(reference) line over at least a few orders of magnitude for h.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

h

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Hessian check.

The slope of the continuous line should match that of the dashed

(reference) line over at least a few orders of magnitude for h.

Figure 1: Sanity check: gradient and hessian

We see that we indeed get the first and second order approximation. The printed output is

9

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

1 Question 16
2

3 Check Gradient:
4 The slope should be 2. It appears to be: 1.99985.
5 If it is far from 2, then directional derivatives might be erroneous.
6 The residual should be 0, or very close. Residual: 0.
7 If it is far from 0, then the gradient is not in the tangent space.
8 In certain cases (e.g., hyperbolicfactory), the tangency test is inconclusive.
9

10 Check Hessian:
11 The slope should be 3. It appears to be: 3.00018.
12 If it is far from 3, then directional derivatives,
13 the gradient or the Hessian might be erroneous.
14 Tangency residual should be zero, or very close; residual: 0.
15 If it is far from 0, then the Hessian is not in the tangent space.
16 ||a*H[d1] + b*H[d2] - H[a*d1+b*d2]|| should be zero, or very close.
17 Value: 2.98033e-15 (norm of H[a*d1+b*d2]: 11.855)
18 If it is far from 0, then the Hessian is not linear.
19 <d1, H[d2]> - <H[d1], d2> should be zero, or very close.
20 Value: -0.0188979 - -0.0188979 = -1.11022e-15.
21 If it is far from 0, then the Hessian is not symmetric.

and confirm they both work fine.

3 Generating data

4 Algorithms

4.1 Initialization
17.

For any Y ∈ Rdm×d such that Y = (Y1, . . . , Ym)⊤ where Yj ∈ SO(d),∀j = 1, . . . ,m, we have that
M := W1Y is a block matrix in Rdm×d where each block Mi ∈ Rd×d is defined by :

Mi =

m∑
j=1

Wi,jYj

Therefore, Y ⊤W1Y is a d× d matrix defined by :

Y ⊤W1Y = Y ⊤M =

m∑
i=1

m∑
j=1

Y ⊤
i Wi,jYj

=
∑

{i,j}∈E

Y ⊤
i HijYj

Thus, finding Ŷ ∈ argmaxY ∈Rdm×d Tr(Y ⊤W1Y) subject to Yj ∈ SO(d),∀j = 1, . . . ,m is equivalent to
finding Ŷ ∈ argmaxY ∈Rdm×d

∑
{i,j}∈E Tr(Y ⊤

i HijYj) subject to Yj ∈ SO(d),∀j = 1, . . . ,m.
Now, recall from the solution of question 8 that whenever p = pκ, computing the maximum likelihood
estimator is equivalent to finding X̂MLE ∈ argmaxX∈M

∑
{i,j}∈E Tr(X⊤

i HijXj). But, whenever there
are no anchor, we have that M = (SO(d))m, and we conclude by observing that in this case, finding
Ŷ ∈ argmaxY ∈Rdm×d

∑
{i,j}∈E Tr(Y ⊤

i HijYj) subject to Yj ∈ SO(d),∀j = 1, . . . ,m is equivalent to
finding X̂MLE ∈ argmaxX∈M

∑
{i,j}∈E Tr(X⊤

i HijXj).

10

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

18.

Assume that Yj ∈ SO(d) for all j = 1, . . . ,m.
Observe first that by the definition of the Kronecker product, D1 = D⊗ Id is a dm× dm matrix that
can be seen as an m×m block matrix where each block is a d×d matrix, and moreover, all the blocks
are zero matrices, except on the main diagonal, and they are of the form deg(i)Id.
Using this observation we now compute :

D1Y = (deg(1)Y1, . . . , deg(m)Ym)⊤

=⇒ Y tD1Y =

m∑
i=1

deg(i)Y ⊤
i Yi

=

m∑
i=1

deg(i)Id

= Tr(D)Id

19.

a) Observe that Y ⊤D1Y = Tr(D)Id ⇐⇒ 1
Tr(D)Y

⊤D1Y = Id. Therefore, by defining D
1/2
1 whose

entries are the square roots of the entries of the (diagonal) matrix D1, which by definition are
all non-negative, we suggest the change of variables Z = 1√

Tr(D)
D

1/2
1 Y ∈ Rdm×d.

Now, we have that Y ⊤D1Y = Tr(D)Id ⇐⇒ Z⊤Z = Id ⇐⇒ Z ∈ St(dm, d). Moreover, one
can see that Y =

√
Tr(D)D

−1/2
1 Z, where D

−1/2
1 is obtained by inverting the entries of D1/2

1 .
Therefore, we can observe that :

max
Y ∈Rdm×d:Y ⊤D1Y=Tr(D)Id

Tr(Y ⊤W1Y) = max
Z∈St(dm,d)

Tr(Tr(D)Z⊤D
−1/2
1 W1D

−1/2
1 Z)

= max
Z∈St(dm,d)

Tr(Z⊤D
−1/2
1 W1D

−1/2
1 Z)

One can already see that this form of our problem looks familiar. Indeed, one can relate this
formulation to the PCA formulation.
Now, if we let Y ∈ Rdm×d be such that Y ⊤D1Y = Tr(D)Id and the d columns of Y form a
dominant set of generalized eigenvectors of the GEP with pencil (W1, D1), one can see that if
we introduce Λ ∈ Rd×d be a diagonal matrix whose entries are the corresponding generalized
eigenvalues, then we have that :

W1Y = D1Y Λ

=⇒
√

Tr(D)W1D
−1/2
1 Z =

√
Tr(D)D

−1/2
1 ZΛ

=⇒ D
−1/2
1 W1D

−1/2
1 Z = ZΛ

So in this case, the columns of Z are eigenvectors of the eigenvalue problem D
−1/2
1 W1D

−1/2
1 v =

λv associated to the corresponding eigenvalues given by the diagonal entries of Λ. That is,
Z is formed by collecting the d top eigenvectors (recall from the definition of dominant set of
generalized eigenvectors that these consist of eigenvectors whose corresponding eigenvalues are
at least as large as all other generalized eigenvalues of the GEP) of D

−1/2
1 W1D

−1/2
1 , and we

know that this yields a global optimum for maxZ∈St(dm,d) Tr(Z
⊤D

−1/2
1 W1D

−1/2
1 Z).

So, in other words, Y is a global maximizer of (7).

11

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

b) We can use Matlab’s "eigs" function to return the top d eigenvalues of D−1/2
1 W1D

−1/2
1 in the

forme of a diagonal matrix whose entries are those eigenvalues, and a matrix Z whose columns
are the corresponding eigenvectors. We can then find back our global maximizer Y using the
relation between Z and Y detailed previously. Note that in the case where the eigenvectors
returned by Matlab’s function are not normalized, we will need to normalize them in order to
form a matrix Z that is in the Stiefel Manifold. Observe also that Matlab can technically solve
the GEP (using the command [Y,] = eigs(W1, D1, d)) we would like to solve, and this
could be another way of computing our global maximizer.

20.

a) Observe that by definition, the d columns of Y ∈ Rdm×d (satisfying Y ⊤D1Y = Tr(D)Id) form
a dominant set of generalized eigenvectors of the GEP with pencil (W1, D1) if and only if
W1Y = D1Y Λ where Λ ∈ Rd×d is a diagonal matrix whose entries are the corresponding
generalized eigenvalues. Note that if we assume that we have a complete measurement graph
and there is no noise, we have that D1 = (m− 1)Idm, and W1 = RR⊤. Therefore, we have that
:

W1Y = D1Y Λ

⇐⇒ RR⊤Y = (m− 1)Y Λ

1

m− 1
RR⊤Y = Y Λ

where in the equation 1
m−1RR⊤Y = Y Λ we recognize an eigenvalue problem, that is, 1

m−1RR⊤Y =

Y Λ ⇐⇒ the columns of Y are eigenvectors of 1
m−1RR⊤ and the diagonal entries of Λ are the

associated top d eigenvalues.
Note that the eigenvalues of 1

m−1RR⊤ are the eigenvalues of 1
m−1R

⊤R, plus additional zeros
(since RR⊤ is of a bigger size than R⊤R). Now, we see that 1

m−1R
⊤R = m

m−1Id, so the top d

eigenvalues of 1
m−1RR⊤ are all equal to m

m−1 .
It now follows that :

1

m− 1
RR⊤Y = Y Λ

⇐⇒ RR⊤Y = mY

Therefore, showing that the d columns of Y ∈ Rdm×d (satisfying Y ⊤D1Y = Tr(D)Id) form a
dominant set of generalized eigenvectors of the GEP with pencil (W1, D1) if and only if Y = RQ
for some orthogonal matrix Q ∈ Rd×d, is equivalent to showing that for Y ∈ Rdm×d satisfying
Y ⊤D1Y = Tr(D)Id, we have that RR⊤Y = mY ⇐⇒ Y = RQ for some orthogonal matrix
Q ∈ Rd×d.
So assume first that RR⊤Y = mY holds. Then, if we define Q = 1

mR⊤Y ∈ Rd×d, we have that
:

Q⊤Q =
1

m2
Y ⊤RR⊤Y

=
1

m
Y ⊤Y

but since we assumed Y ⊤D1Y = Tr(D)Id, i.e (m − 1)Y ⊤Y = m(m − 1)Id, it follows that
Q⊤Q = Id and hence, is orthognal as wanted.

12

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

Assume now that Y = RQ for some orthogonal matrix Q ∈ Rd×d. Then we compute :

RR⊤Y = RR⊤RQ

= mRQ

= mY

and we are done.

b) Let Y be a valid solution to (7), that is, Y ∈ argmaxY ∈Rdm×d Tr(YW1Y) subject to Y ⊤D1Y =
Tr(D)Id. Part (a) combined with question 19 shows that each block Yj belong to O(d) in these
settings. But we don’t know whether there determinant equals 1 or −1.
Observe that by part (a), we can decompose each block as Yj = RjQ, where Q ∈ O(d). It follows
that ∀j = 1, . . . ,m, det(Yj) = det(Rj) det(Q) = det(Q). In other words, either all the blocks Yj

belong to SO(d) (have determinant equal to 1), or none of them belong to SO(d) (they all have
determinant equal to −1).
In the first case, Y (a) = Y is a valid solution to (6) since it belongs to SO(d) by assumption and
maximizes the same cost function. Note that the objective value to (6) is necessarily smaller or
equal to the objective value of (7). Indeed, it follows from the fact that we maximize the same
cost function, but on different sets, but we have that {Y ∈ Rdm×d|Yj ∈ SO(d),∀j = 1, . . . ,m} ⊆
{Y ∈ Rdm×d|Y ⊤D1Y = Tr(D)Id}.
Now, in the other case, we see that ∀j = 1, . . . ,m, det(Y (b)

j) = det(Yj) det(J) = (−1)2 = 1 and

that Y
(b)
j

⊤
Y

(b)
j = J⊤Y ⊤

j YjJ = J⊤J = Id, hence, Y (b)
j ∈ SO(d).

So, we finally argue that Tr(Y ⊤W1Y) = Tr(Y (b)⊤W1Y
(b)) in order to conclude this question.

Indeed, on one side we see that :

Tr(Y ⊤W1Y) = Tr(Q⊤R⊤RR⊤RQ)

= Tr(m2Id)

= m2d

and on the other side :

Tr(Y (b)⊤W1Y
(b)) = Tr(J⊤Y ⊤W1Y J)

= Tr(m2J⊤J)

= Tr(m2Id)

= m2d

21.

We have by definition that
∏

SO(d)(
∑

j∈J X̃⊤
j Rj) ∈ argminQ∈SO(d)∥Q−

∑
j∈J X̃⊤

j Rj∥2F . Now, we see
that :

∥Q−
∑
j∈J

X̃⊤
j Rj∥2F = Tr((Q−

∑
j∈J

X̃⊤
j Rj)

⊤(Q−
∑
j∈J

X̃⊤
j Rj))

= Tr(Q⊤Q−
∑
j∈J

Q⊤X̃⊤
j Rj −

∑
j∈J

R⊤
j X̃jQ+ (

∑
j∈J

R⊤
j X̃j)(

∑
j∈J

X̃⊤
j Rj))

= d−
∑
j∈J

Tr(Q⊤X̃⊤
j Rj +R⊤

j X̃jQ) + Tr((
∑
j∈J

R⊤
j X̃j)(

∑
j∈J

X̃⊤
j Rj))

13

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

So, it follows that
∏

SO(d)(
∑

j∈J X̃⊤
j Rj) ∈ argmaxQ∈SO(d)

∑
j∈J Tr(Q⊤X̃⊤

j Rj +R⊤
j X̃jQ).

On the other side, we see that :∑
j∈J

∥Rj − X̃jQ∥2F =
∑
j∈J

Tr((Rj − X̃jQ)⊤(Rj − X̃jQ))

=
∑
j∈J

Tr(R⊤
j Rj −R⊤

j X̃jQ−Q⊤X̃⊤
j Rj +Q⊤X̃⊤

j X̃jQ)

=
∑
j∈J

(Tr(Id)− Tr(R⊤
j X̃jQ+Q⊤X̃⊤

j Rj) + Tr(Q⊤Q))

=
∑
j∈J

(2d− Tr(R⊤
j X̃jQ+Q⊤X̃⊤

j Rj))

And we observe that finding X̂ ∈ argminQ∈SO(d)

∑
j∈J∥Rj − X̃jQ∥2F is equivalent to finding X̂ ∈

argmaxQ∈SO(d)

∑
j∈J Tr(R⊤

j X̃jQ+Q⊤X̃⊤
j Rj), so, in other words,

∏
SO(d)(

∑
j∈J X̃⊤

j Rj) ∈ argminQ∈SO(d)

∑
j∈J∥Rj−

X̃jQ∥2F .

22.

We write the code of this initialization in initialization.m. To test it, we write assertions along
the code. We assert the solution Y of the GEP is right with

assert(norm(W*Y-D1*Y*S)< tol),

we assert that Y is also feasible for the constraints of the minimization problem with

assert(norm(Y'*D1*Y - trace(D)*eye(d))< tol).

We also assert that the projections of matrices A to SO(d) gives orthogonal rotation matrices R with

assert(norm(R'*R - eye(size(A)))< tol); assert(abs(det(R)- 1)< tol);.

To check if it gives a candidate with a better cost (cost is the negative of the loglikelyhood) that a
random one, we sample some points and compare the average and standard deviation of the cost. This
is done in main.m at cell Question 22 and we get the following input in the Command Window:

1 Question 22
2 Initial cost : -681.418514
3 Random cost : -215.384533 +- 34.516908

This confirms that the spectral initialization is indeed a good first guess.

4.2 Riemannian gradient descent and trust-regions
23.

Like proposed in [2, Section 6.4.6], we take an estimation of the diameter of the manifold for ∆̄.
To get this estimation, we take the double of the norm of the vector space, which is 2∥X∥ =
2
√

(m−ma)∥X11∥2 = 2
√

(m−ma)d. According to this value, we choose ∆0 = ∆̄/8.
Like in Question 22, we test the MSE on random data and on the initialization and we get

14

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

1 Question 23
2 Initial MSE : 10.742230
3 Random MSE : 10.799410 +- 1.843152
4 Expected random MSE : 10.5797 (= 2/3 * pi^2 + 4)

So we see that the spectral guess is a good candidate to optimize the objectif function, the only "error"
that we have, but is not a better candidate for the actual real error.

24.

a) We initialize the problem in main.m, at cell Question 22 with prob = build_problem(d, ...

m, ma, kappa1, kappa2, q, G);.

b) We choose the random point with X0 = prob.M.rand();.

c) We run RGD and RTR using the options that we defined in prob.option during build_problem:

1 problem.option.Delta_bar = 2*sqrt(d*(m-ma));
2 problem.option.Delta0 = problem.option.Delta_bar / 8;
3 problem.option.statsfun = statsfunhelper('mse', @(X) problem.MSE(X));
4 problem.option.tolgradnorm = 1e-6 / problem.cardE;

The gradient norm tolerance is 10−6 normalized by |E| since f is a sum of |E| terms.

d) We plot the gradient norm and the objective function in Figure [2] with a log scale in the abscissa.
We see that RGD gradient norm has a linear convergence of rate e−0.489753 = 0.6128, when TRG

0 10 20 30 40 50 60

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

G
ra

d
ie

n
t
n
o
rm

Question 24.d)

Convergence of the gradient norm for random initialization

RGD

linear interpolation of slope -0.388309

RTR

0 10 20 30 40 50 60

Iteration

50

100

150

200

250

300

350

400

L
o
g
lik

e
ly

h
o
o
d

Question 24.e)

Convergence of the loglikelyhood for random initialization

RGD

RTR

Figure 2: Question 24 d),e)

takes way less iterations to converge, and looks super-linear (confirming the local super-linearity
convergence of RTR stated in [2, Theorem 6.30]), and we have 40 iterations versus 10. However,
the actual running time per iteration is highly increased for TRG due to the inner optimization
problem. The outputs of the methods printed are

1 Question 24
2 Random initialization

15

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

3 RGD:
4 Last stepsize smaller than minimum allowed; options.minstepsize = 1e-10.
5 Total time is 0.105489 [s] (excludes statsfun)
6 RTR:
7 Gradient norm tolerance reached; options.tolgradnorm = 1e-07.
8 Total time is 0.417930 [s] (excludes statsfun)

So we see that RGD is actually faster, but that it failed to reach the tolerance because steps
were too small. TRG becomes interesting at the end when RGD steps size become too small.

e) Concerning the objective function, we see that the value quickly reach a step value, and we dont
see it change at this scale, so we decide to substract this step, take the negative, and plot with
a log scale in the abcissa in Figure [3]. We also plot the cost value of the true rotations, and we
see that it is over the minimum computed. This is because of the model, it contain randomness,
so the true rotation don’t fit the model perfectly, and the maximum of likelyhood is not attained
at the real rotations. We see now a clearer convergence until the end, the optimization continue

0 10 20 30 40 50 60

Iteration

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

L
o
g
lik

e
ly

h
o
o
d
 m

in
u
s
 a

 c
o
n
s
ta

n
t

Question 24.e)

Convergence of the loglikelyhood (plus 350.286908) for random initialization

RGD

linear interpolation of slope -0.783264

RTR

Cost of true R

0 10 20 30 40 50 60

Iteration

10
0

10
1

M
S

E

Question 24.mse

Convergence of the mse for random initialization

RGD

RTR

Figure 3: Question 24 d),e)

to make gain and is not staging. It seem that RGD has almost linear convergence, maybe a bit
more since we observe a little of convexity. Again RGM is way better per iteration. The MSE
error quickly decrease to zero, meaning that we recover the true rotations perfectly, even with
the low noise.

f) We use the spectral initialization by writting X0 = prob.init();

g) We run RGD and RTR and get the ouput:

1 Spectral initialization
2 RGD:
3 Last stepsize smaller than minimum allowed; options.minstepsize = 1e-10.
4 Total time is 0.130419 [s] (excludes statsfun)
5 RTR:
6 Gradient norm tolerance reached; options.tolgradnorm = 1e-07.
7 Total time is 0.234462 [s] (excludes statsfun)

16

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

0 5 10 15 20 25

Iteration

0.3377

0.3378

0.3379

0.338

0.3381

0.3382

0.3383

M
S

E

Question 24.h)

Convergence of the MSE for spectral initialization

RGD

RTR

Figure 4: Question 24 h)

h) We plot the gradient norm and the objective function in Figure [4] with a log scale in the
abscissa for the gradient. We see that we get a similar convergence as before, with again linear
convergence for RGD with a rate however a bit smaller, and super-linear convergence for RTR.
This could be explained from the fact that the initialization is yet better and put the steps on
a nearer zone where the slope is smaller. We also note when the number of iterations stay the
same, the running time of RTR has been divided by two, showing the interest of the spectral
initialization for an algorithm that can actually reach the tolerance.

i) The code is tested by taking of the condition of identity of the first anchor. Everything run and
converge so the test is positive.

25.

Here, we re-do the same experiments as in Question 24 but with some outliers, and for a larger
problem. We plot the same graphs related to the points a)-h) in Figure [5] and Figure [6].

0 10 20 30 40 50 60 70 80

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

G
ra

d
ie

n
t

n
o

rm

Question 25.d)

Convergence of the gradient norm for random initialization

RGD

linear interpolation of slope -0.250009

RTR

0 10 20 30 40 50 60 70 80

Iteration

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

L
o
g
lik

e
ly

h
o
o
d
 m

in
u
s
 a

 c
o
n
s
ta

n
t

Question 25.h)

Convergence of the loglikelyhood (plus 10664.433426) for random initialization

RGD

linear interpolation of slope -0.511972

RTR

Cost of true R

0 10 20 30 40 50 60

Iteration

10
0

10
1

M
S

E

Question 24.mse

Convergence of the mse for random initialization

RGD

RTR

Figure 5: Question 25 d),e)

26.

Here, we re-do the same experiments as in Question 24 a),f)-h), with the data of Question 24 but
for a incomplete Erdős-Rényi graph of density 0.75. We plot the same graphs related to point h) in
Figure [7].

17

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

0 10 20 30 40 50 60

Iteration

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

L
o
g
lik

e
ly

h
o
o
d
 m

in
u
s
 a

 c
o
n
s
ta

n
t

Question 26.h)

Convergence of the loglikelyhood (plus 10664.433426) for spectral initialization

RGD

linear interpolation of slope -0.528838

RTR

Cost of true R

0 10 20 30 40 50 60

Iteration

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

G
ra

d
ie

n
t

n
o

rm

Question 25.h)

Convergence of the gradient norm for spectral initialization

RGD

linear interpolation of slope -0.255568

RTR

0 10 20 30 40 50 60

Iteration

0.062

0.063

0.064

0.065

0.066

0.067

0.068

M
S

E

Question 25.mse

Convergence of the mse for spectral initialization

RGD

RTR

Figure 6: Question 25 h)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iteration

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

G
ra

d
ie

n
t

n
o

rm

Question 26.h)

RTR: Convergence of the gradient norm for spectral initialization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iteration

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

L
o

g
lik

e
ly

h
o

o
d

10
4

Question 26.h)

RTR: Convergence of the loglikelyhood for spectral initialization

RTR

cost of true R

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iteration

0.077

0.0775

0.078

0.0785

0.079

0.0795

0.08

M
S

E

Question 26.mse

RTR: Convergence of the mse for spectral initialization

Figure 7: Question 26

27.

The spectral initialization has been thought while trying to optimize the objective function. We made
the supposition that the density was not composite, that we have small noise but no outliers. Take
the convention κ1 > κ2 such that κ1 quantify the noise and κ2 the outliers. We expect the spectral
initialization to be good for q = 1 and κ1 > 0, or at least for parameters such that (q − 1)κ2 small
enough. As we make q smaller, we make more outliers and don’t know how the spectral initialization
will behave. However, as q goes smaller, the number of outlier augment and we would need a good
initialization.

The purpose of this initialization is to avoid falling into some local non optimal minimum. The
objective function is non convex, it means that some of the terms are not convex, and that by increasing
the number of terms we can expect the number of local minima to increase. This motivates us to use
a complete graph to accentuate the effect of the spectral initialization.

The dimension is kept to 3 by the motivation for the 3D space world, and to increase the effect of
q, we set κ1 = 100.

We decide to measure the MSE of different estimators, since it is the final measure that we actually
care about for the final goal. We plot the MSE of a total random estimator, the MSE when we optimize
it with RTR, and the MSE of the spectral initialization optimized with RTR. For the randomness of
the initial point, we sample and plot a confidence interval with alpha = 0.05 risk, see Figure [8].

• We see that the optimization is clearly better than the random parameter, but that for low value
of q, the estimator is bad, and even worse than a random initialization.

18

T. Renard, B. Müller Estimating rotations from relative measurements May 2023

Figure 8: Question 27

References
[1] N. Boumal et al. “Manopt, a Matlab Toolbox for Optimization on Manifolds”. In: Journal of

Machine Learning Research 15.42 (2014), pp. 1455–1459. url: https://www.manopt.org.

[2] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023. doi: 10.1017/9781009166164. url: https://www.nicolasboumal.net/book.

[3] Benoît Müller and Thomas Renard. opti-manifolds-rotations-estimation. 2023. url: https://
github.com/Benoit-Muller/opti-manifolds-rotations-estimation.

19

https://www.manopt.org
https://doi.org/10.1017/9781009166164
https://www.nicolasboumal.net/book
https://github.com/Benoit-Muller/opti-manifolds-rotations-estimation
https://github.com/Benoit-Muller/opti-manifolds-rotations-estimation

	Application description and warm-up problems
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.

	Manifold factory, gradients and Hessians
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.

	Generating data
	Algorithms
	Initialization
	17.
	18.
	19.
	20.
	21.
	22.

	Riemannian gradient descent and trust-regions
	23.
	24.
	25.
	26.
	27.

